

Альтаир - М

ПРОГРАММНЫЙ КОМПЛЕКС ОБРАБОТКИ СЕЙСМИЧЕСКИХ ДАННЫХ

докладчик: Александр Селивёрстов

Симпозиум по обработке данных сейсморазведки в новом Российском программном комплексе "Альтаир-М"

Структура презентации

01

общие сведения

что такое Альтаир-М

03

графический интерфейс 02

архитектура

внутренне устройство

04

технические требования

Структура презентации

05 примеры обработки

07 технологии реализованные методики

06 преимущества

импортное ПО и Альтаир-М

08

01 Альтаир - М

общие сведения

Альтаир - М

AO «MAГЭ»

000 «Совфрансгео»

АО «Антарес-Код»

продукт кооперации

Права на интеллектуальную собственность подтверждены

АО «Антарес-Код» действующий собственник

входит в реестр отечественного ПО Минцифры России

Единственный дистрибьютор

000 «Совфрансгео»

АКЦИОНЕРНОЕ ОБЩЕСТВО «АНТАРЕС-КОД»

ОГРН 1235100005360, ИНН 5190097131, Адрес юридического лица: 183038, МУРМАНСКАЯ ОБЛАСТЬ, Г.О. ГОРОД МУРМАНСК Г МУРМАНСК, УЛ СОФЬИ ПЕРОВСКОЙ, Д. 26, ОФИС 903

«02» сентября 2024 г.

По месту требования

СЕРТИФИКАТ

истоящим подтверждем, что Общество с ограниченной ответственностью «Совранисте», авреистирирование по авресу. 115-07, г. Москав, Нататинская наб., д.б. опомещение X, вазнесть спинственным дистрибьотером программиого обеспечения для обработка данных сейсноравледки ДИЛД «АЛБТАНР-М» в Российской Фезерании, и имеет право экспечать договоры с коночными пользователямы на обстроявание, техническую подперяжу, сопроизждение данного программиого обеспечения и обучения работо сами на данной территураци.

Данный сертификат действителен до «31» августа 2025 г.

Генеральный директор

В.С. Родионова

РЕСТР ТРОГРАММНОГО ОБЕСПЕЧЕНИ:

Евразийский

Главная > Реестр ПО > Программное обеспечение "АЛЬТАИР-М"

Программное обеспечение "АЛЬТАИР-М"

Сведения обновлены 07.03.2024

Реестровая запись №21697 от 07.03.2024

Произведена на основании поручения Министерства цифрового развития, связи и массовых коммуник Российской Федерации от 07.03.2024 по протоколу заседания экспертного совета от 21.02.2024 №64пр

Работает на отечественных операционных системах

РЕД ОС Astra Linux AlterOS

СЕРТИФИКАТ СОВМЕСТИМОСТИ

ПРОГРАММНОГО ПРОДУКТА АЛЬТАИР-М И ОПЕРАЦИОННОЙ СИСТЕМЫ РЕД ОС

Настоящим сертификатом компании ООО «Совфранстео» и ООО «РЕД СОФТ» подтверждают совместимость и корректность работы программного продукта Альтаир-М с операционной системой РЕД ОС.

Настоящий сертификат выдан на основании испытаний, проведенных специалистами компаний ООО «Совфранстсо» и ООО «РЕД СОФТ».

Результаты испытаний зафиксированы в протоколе тестирования.

Генеральный директор ООО «РЕД СОФТ»

/Анисимов М.В./

Генеральный директор

Список пользователей Альтаир-М

АО «МАГЭ»

000 «Газпромнефть НТЦ»

ООО «Газпром ВНИИГАЗ»

000 «ТННЦ»

ΠΑΟ «ΠΗΓΦ»

ПАО «СНГЕО»

ЗАО «МиМГО»

ΑΟ «ΔΜΗΓ»

ОП «ИГП»

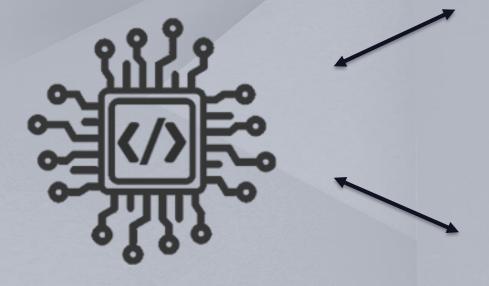
ФГАОУ «МАУ»

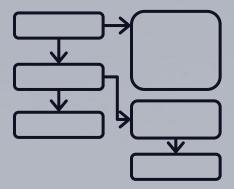
02 Альтаир - M

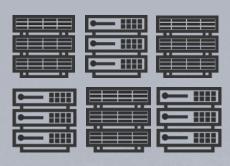
архитектура ПО

Общая информация об Альтаир-М

Утилиты

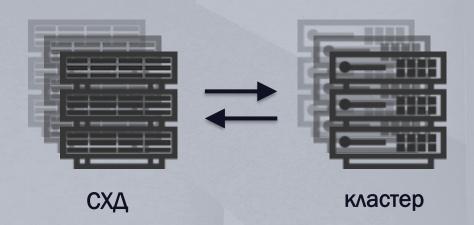

графический интерфейс модули


Рабочая среда


менеджер Заданий менеджер доступа к распределённым данным

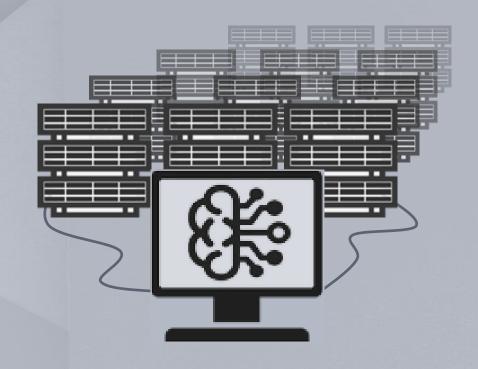
граф обработки

Менеджер Заданий

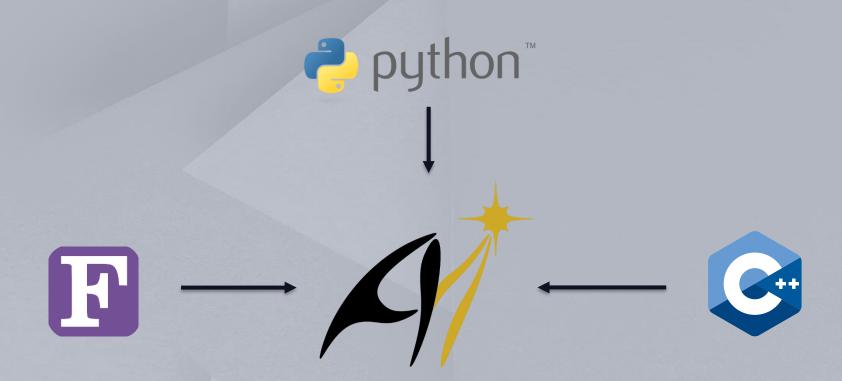


аппаратные ресурсы

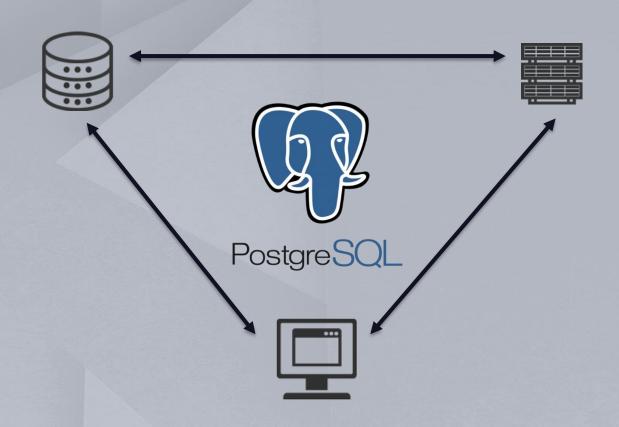
Менеджер доступа к распределённым данным



Архитектура оборудования



от рабочей станции



до суперкомпьютера

Интеграция собственных алгоритмов

Свободная система управления базами данных

Совместимость со сторонним ПО

По форматам данных:

Geocluster - полная
Geovation ½ - полная
любое ПО, через SEGY

По приложениям:

Geocluster - полная

Geovation 1 - полная

Geovation 2 - частичная

03 Альтаир - М

графический интерфейс

Интерактивные возможности АЛЬТАИР-М

Планировщик

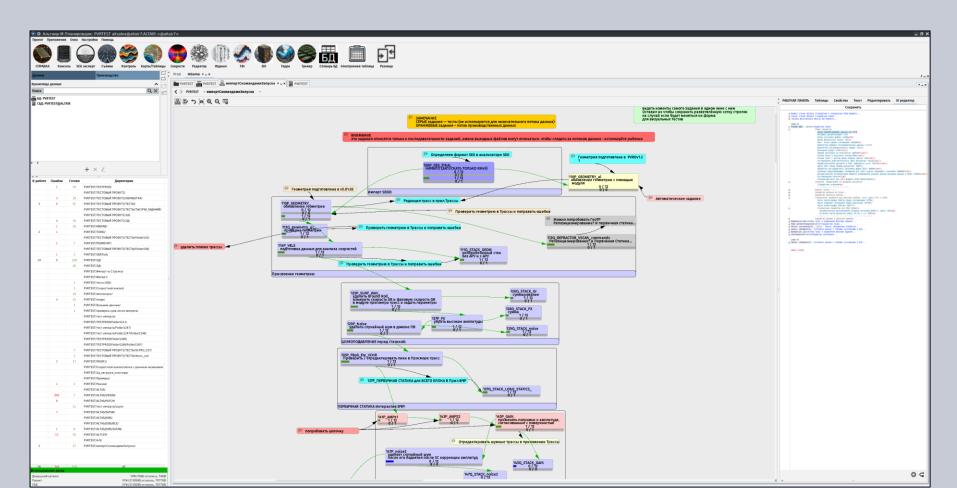
Редактор заданий

Просмотр трасс

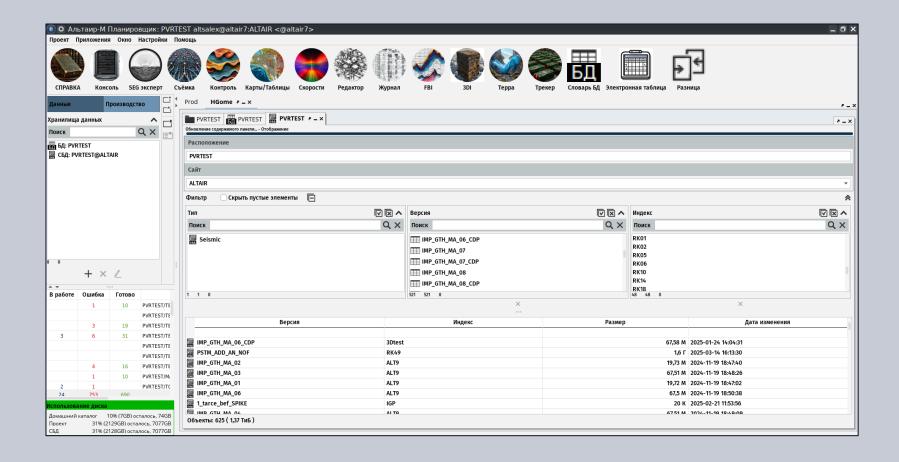
Построение карт

Анализ скоростей

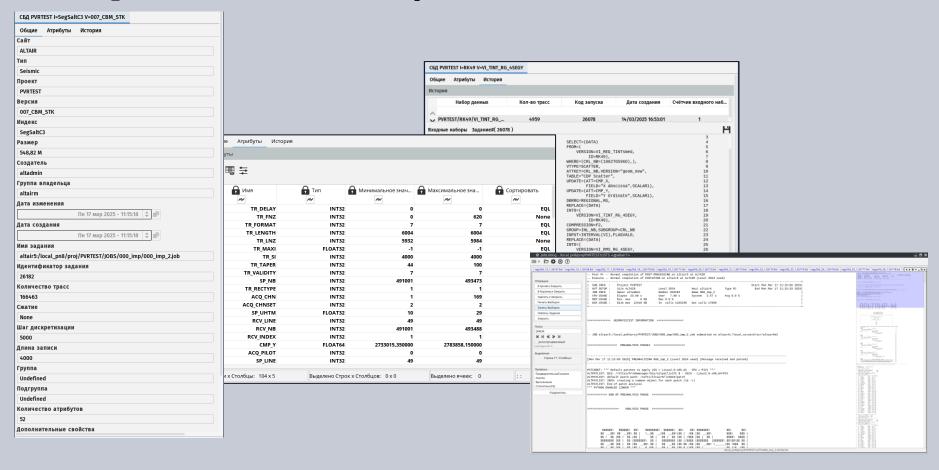
Геометрия съёмки

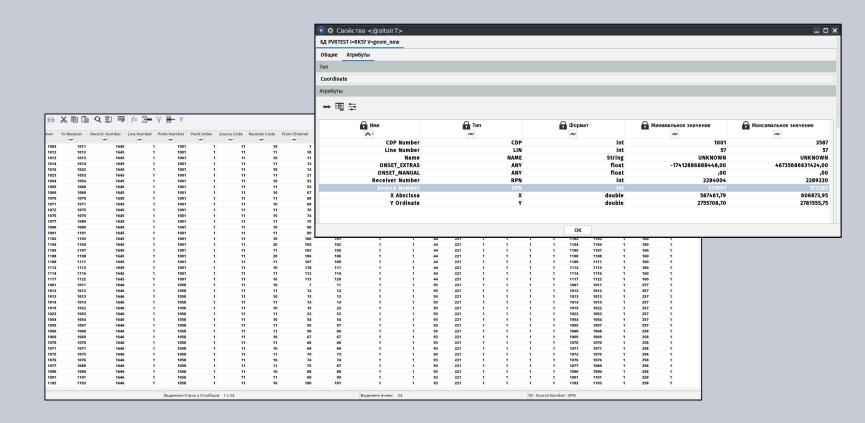

ВЧР

Работа с импульсами

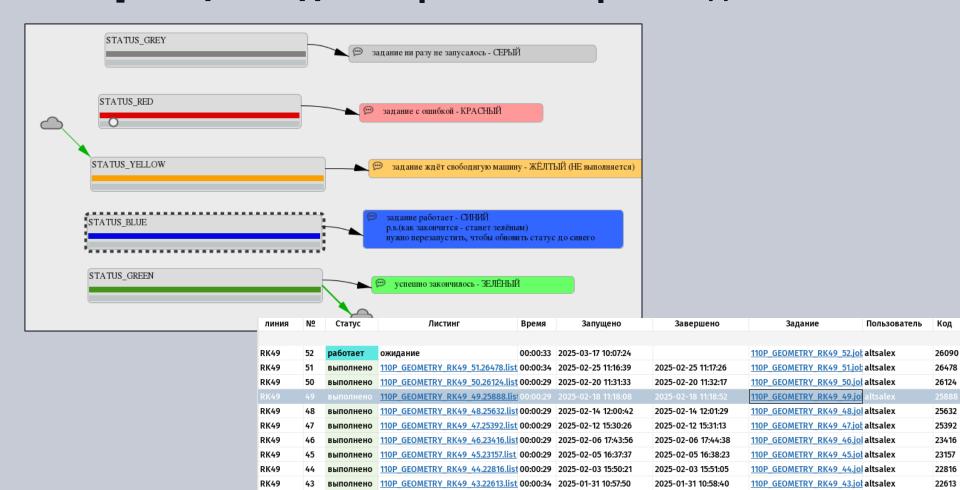

SEG Эксперт

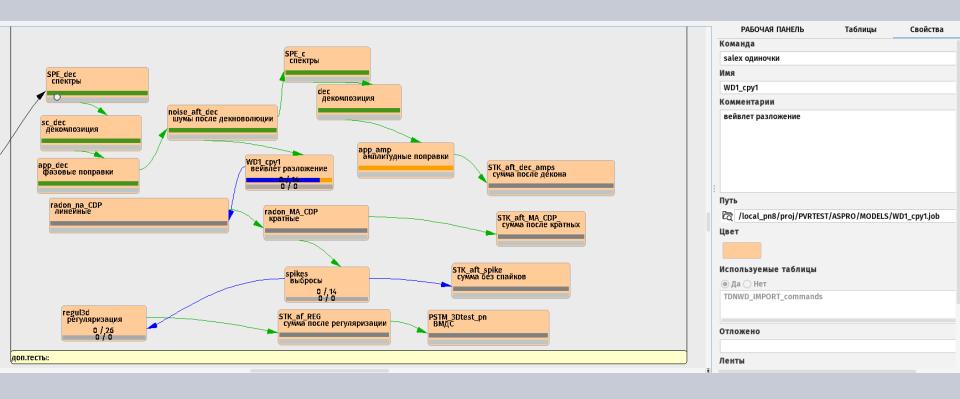
3D визуализация


Планировщик задач. Общее представление


Планировщик задач. Управление данными

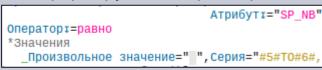
Планировщик задач. Управление данными


Планировщик задач. Таблицы


Планировщик задач. Управление производством

Планировщик задач. Управление производством

Планировщик задач. Авто-запуск


Планировщик задач. Авто-запуск

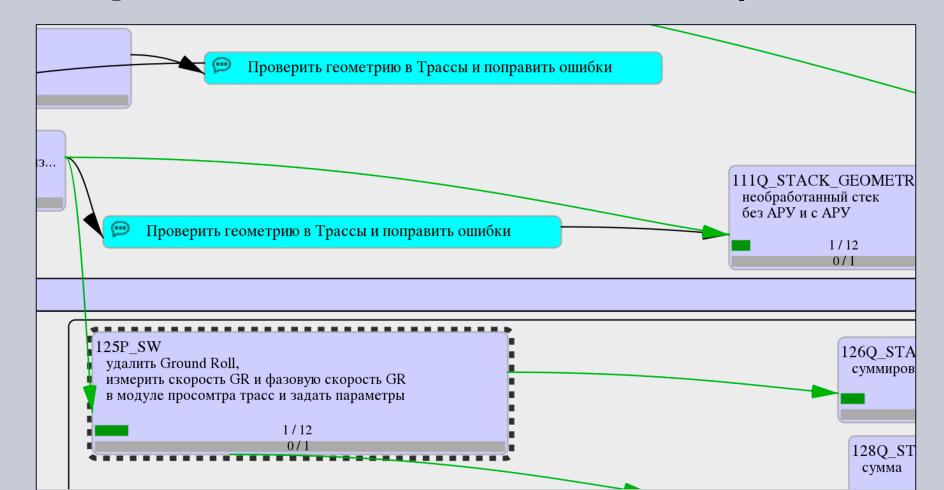
😰 🗅 Таблица : PVRTEST/RUPKALPA B8112 IMPORT cpv1/ <@altair5>

производственная таблица

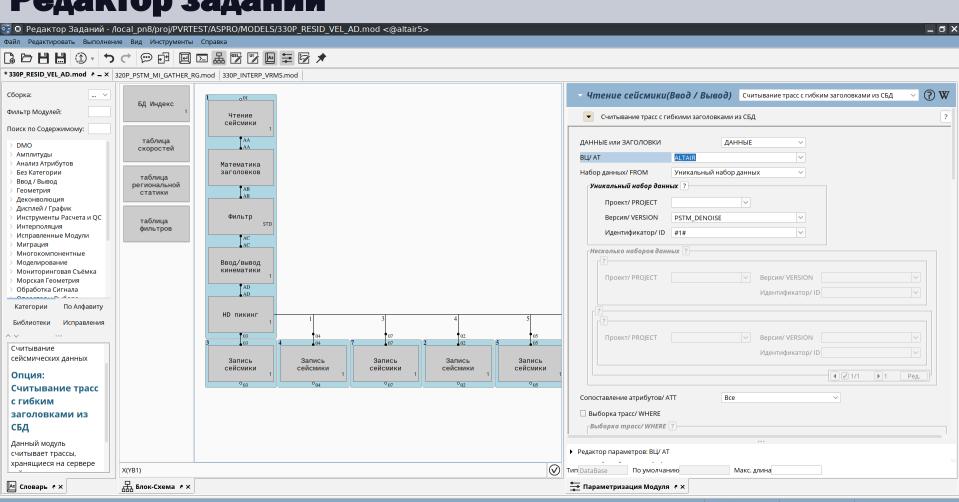
			•						<u> </u>											
Файл І	Файл Редактировать Представления																			
:-	B- B- W A A 및 및 및 🔅 🗵																			
	Владелец	line name	TAPE_DIR	FFID_MIN	FFID_MAX	SP_Min	SP_Max	INL	Valid trac	min_OFF	max_OFF	1stCDPfo	LastCDPf	First CDP	Last CDP/	Nbr CDPs	First SP n	Last SP n	First geo	Last geop
	•	R1	R2	R3	R4	R5	R6	R16	R24	R27	R28	R31	R32	R33	R34	R35	R44	R45	R48	R49
RK01		RK01	RK_9_R_01	1645	2042	1001	2568	01	88878	34	4312	1021	4061	1002	4136	3135	11001	12568	11002	12570
RK02		RK02	SEGD_RK	1001	1329	1004	2307	02	74160	31	5412	1021	3501	1001	3612	2612	21004	22307	21001	22310
RK05		RK05	RK_9_R_05	1001	1643	1001	3333	05	134202	36	4312	1021	5501	1003	5668	4666	51001	53333	51001	53336
RK06		RK06	SEGD_RK	1001	1587	1001	3375	06	133623	12	4862	1021	5601	1002	5751	4750	61001	63375	61001	63378
RK10		RK10	SEGD_RK	1001	1542	1001	3271	10	122704	36	4912	1021	5501	1002	5625	4624	101001	103271	101001	103356
RK14		RK14	SEGD_RK	1001	1645	1011	3638	14	149673	11	4861	1021	6301	1001	6447	5447	141011	143638	141001	143820
RK18		RK18	SEGD_RK	1001	2567	1001	5393	18	251178	12	5012	1021	9661	1002	9792	8791	181001	185393	181001	185401
RK22		RK22	SEGD_RK	2001	2684	1002	3473	22	155535	12	4762	1021	6301	1001	6485	5485	223826	226499	223688	226500
RK37		RK37	SEGD_RK	1001	1880	1001	4602	37	203948	12	5112	1021	8061	1003	8203	7201	371001	374602	371001	374603
RK49		RK49	SEGD_RK	1001	1656	1001	3473	49	146027	36	4712	1021	5801	1002	5960	4959	491002	493473	491001	493488
RK53		RK53	SEGD_RK	1001	1401	1001	2605	53	89531	36	4312	1021	4101	1003	4209	3207	531001	532605	531001	532606
RK57		RK57	SEGD_RK	1001	1325	1001	2283	57	71800	12	3862	1021	3501	1003	3587	2585	571001	572283	571001	572305

формируемые параметры

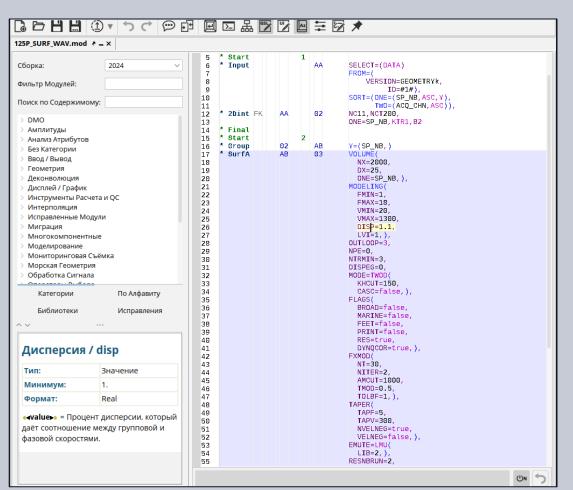
Планировщик задач. Авто-запуск

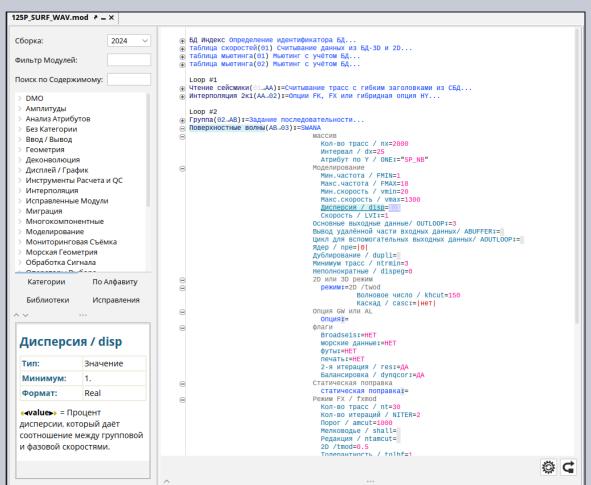

скрипт

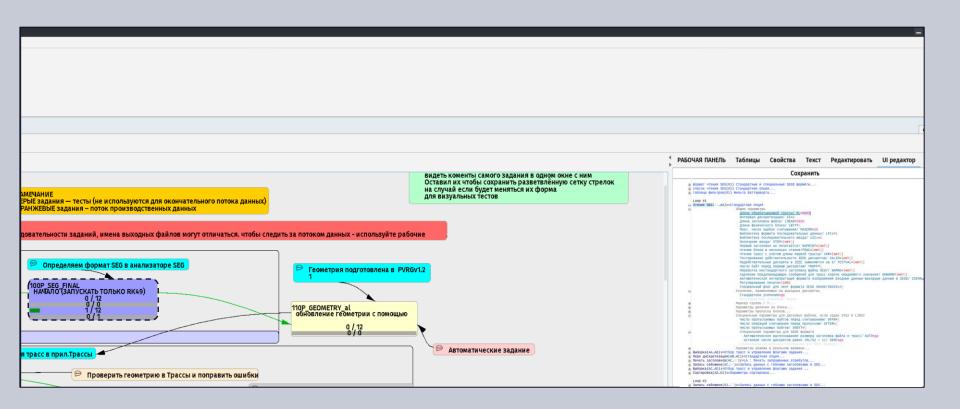
```
find "SEISMIC TRACES INFORMATION
find "SP NB (min) ="
read value min SP
find "SP NB (max) ="
read value max SP
find "RCV NB (min) ="
read value min RCV
find "RCV NB (max) ="
read value max_RCV
find "OFF_NB (min) ="
read value min OFF
find "OFF_NB (max) ="
read value max_OFF
find "CRL NB (min) ="
read value min CRL
find "CRL_NB (max) ="
read value max CRL
find "Number of traces written:"
read value traces
end
\#asprodesk#\
#FILE#\ <<EOD >>&LIST
MP #1#
cr 44 min SP
cr 45 max SP
cr 48 min RCV
cr 49 max RCV
cr 27 min_OFF
cr 28 max OFF
cr 33 min CRL
cr 34 max CRL
cr 24 traces
0 R35=R34-R33+1
EOD
/EOF
```

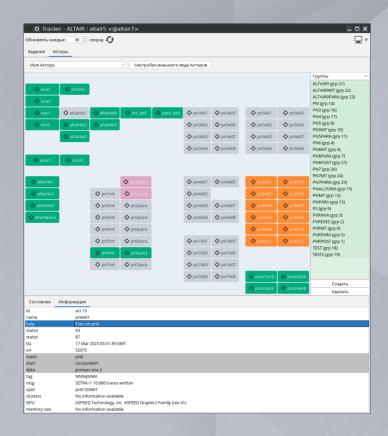

производственная таблица

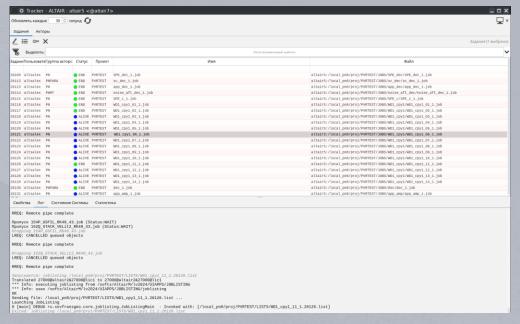
12 II	MPORT	cnv1	./ <@alta	air5>								
T Z _ ' '	All Oldi-	Tcb T		111 32								
SP_Min	SP_Max	INL	Valid trac	min_OFF	max_OFF	1stCDPfo	LastCDPf	First CDP	Last CDP/	. Nbr CDPs	First SP n	Last SP n.
R5	R6	R16	R24	R27	R28	R31	R32	R33	R34	R35	R44	R45
1001	2568	01	88878	34	4312	1021	4061	1002	4136	3135	11001	12568
1004	2307	02	74160	31	5412	1021	3501	1001	3612	2612	21004	22307
1001	3333	05	134202	36	4312	1021	5501	1003	5668	4666	51001	53333
1001	3375	06	133623	12	4862	1021	5601	1002	5751	4750	61001	63375
1001	3271	10	122704	36	4912	1021	5501	1002	5625	4624	101001	103271
1011	3638	14	149673	11	4861	1021	6301	1001	6447	5447	141011	143638
1001	5393	18	251178	12	5012	1021	9661	1002	9792	8791	181001	185393
1002	3473	22	155535	12	4762	1021	6301	1001	6485	5485	223826	226499
1001	4602	37	203948	12	5112	1021	8061	1003	8203	7201	371001	374602
1001	3473	49	146027	36	4712	1021	5801	1002	5960	4959	491002	493473
1001	2605	53	89531	36	4312	1021	4101	1003	4209	3207	531001	532605
1001	2283	57	71800	12	3862	1021	3501	1003	3587	2585	571001	572283


Планировщик задач. Совместное ведение проекта

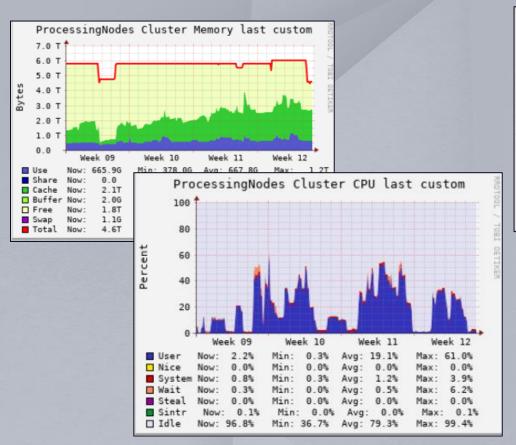

Редактор заданий

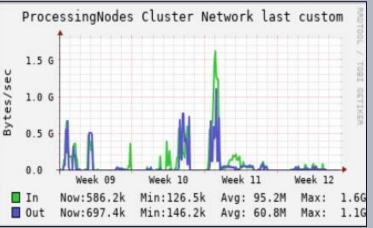

Редактор заданий

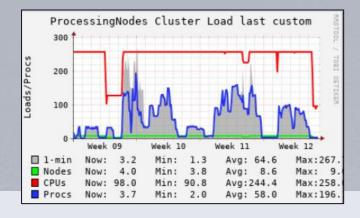

Редактор заданий



Редакция заданий

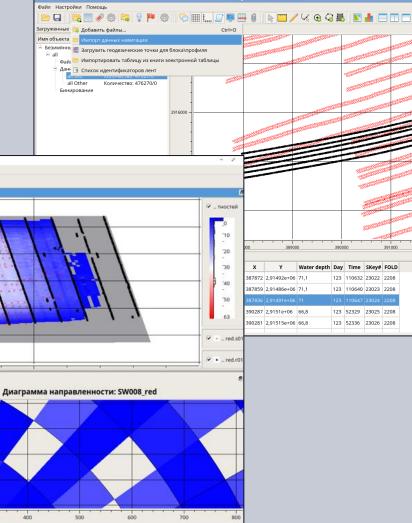



Отслеживание выполняемых заданий



Отслеживание нагрузки на кластер

Контроль геометрии


Окно графиков

2

2 5

Таблица:ПриемникиSW008_red.r01

Таблица:ИсточникиSW008 red.s01

123 110640 23023 2208

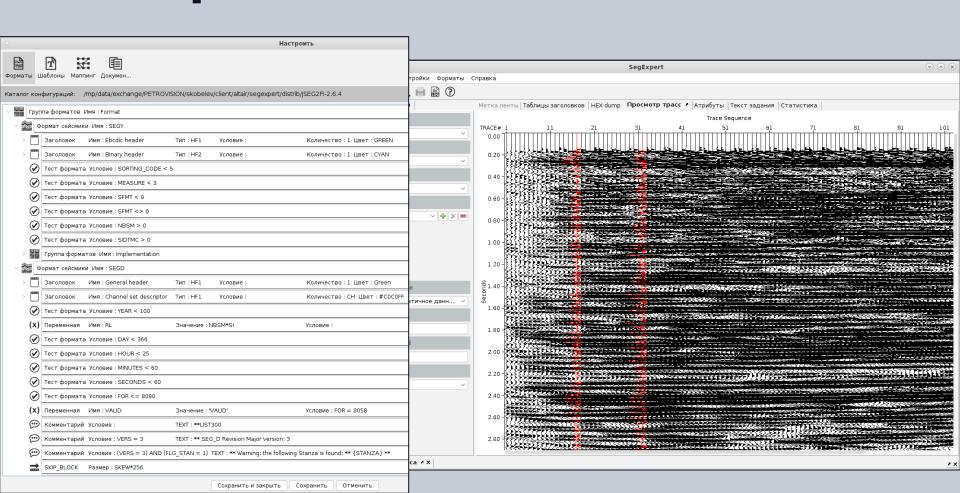
123 52336 23026 2208

4 5 95274.3 95223.7 ии-Ред. Ctrl+MB1 Масштабирование(прям.) Shift+MB1 Нет действия MB2 Нет действия Ctrl+MB2 Нет действия Shift+MB2 Нет действия MB3 Сдвиг карты Ctrl+MB3 Сбросить масштаб Shift+MB3 Нет действия

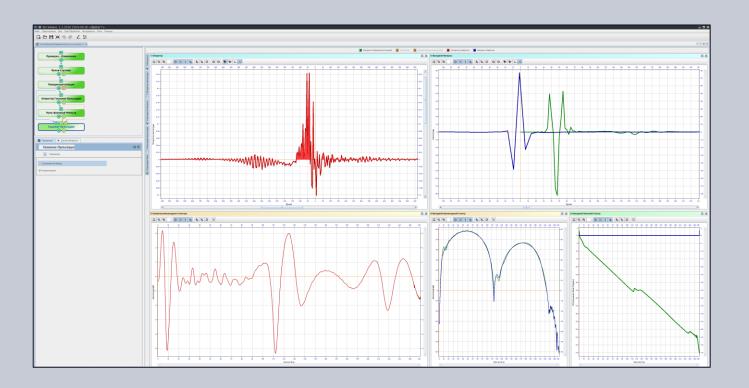
0.0

55.0 0

Графика

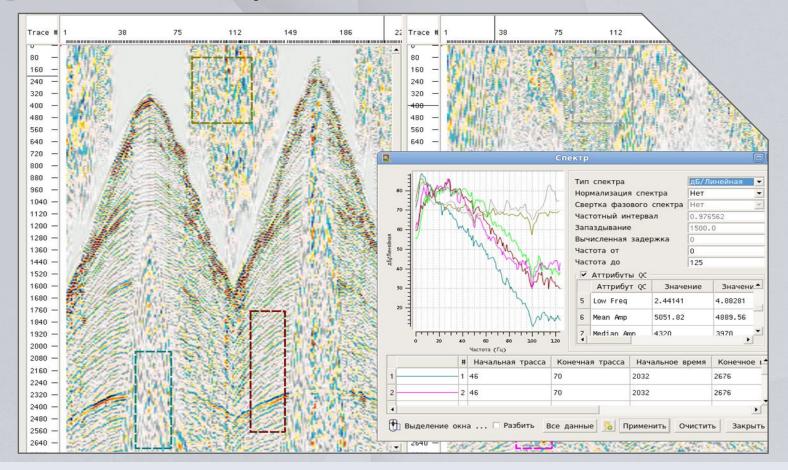

107104.7

107114.8 107122.0

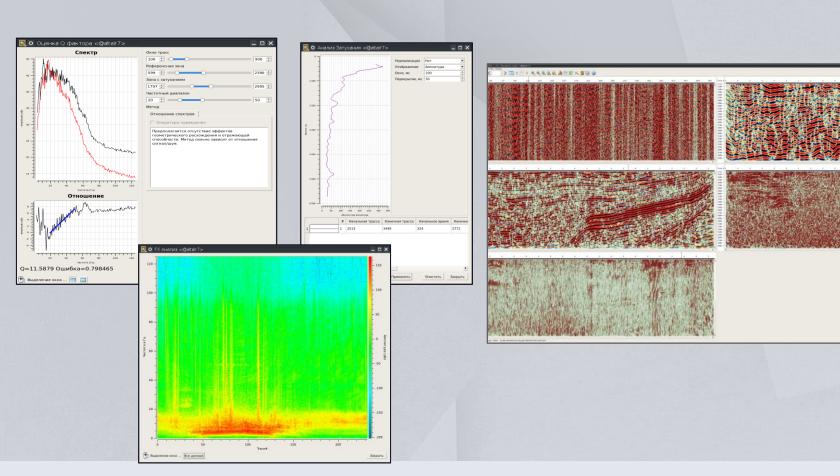

94870.2 450 -

95068.1

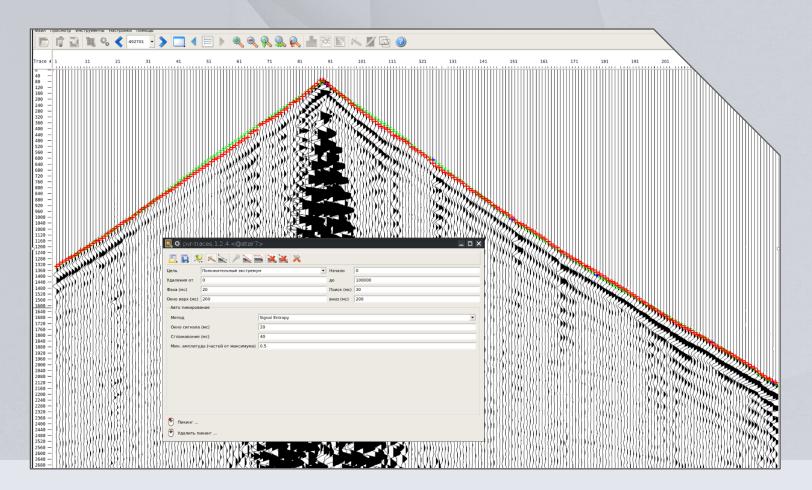
SEG Эксперт

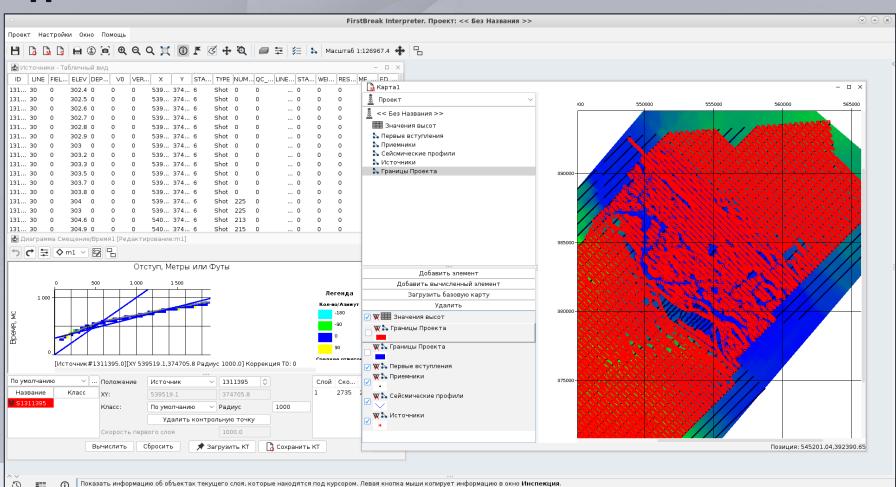


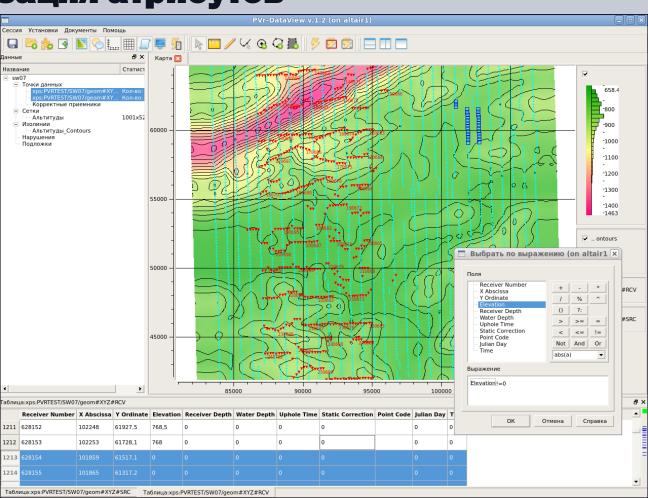
Работа с импульсами

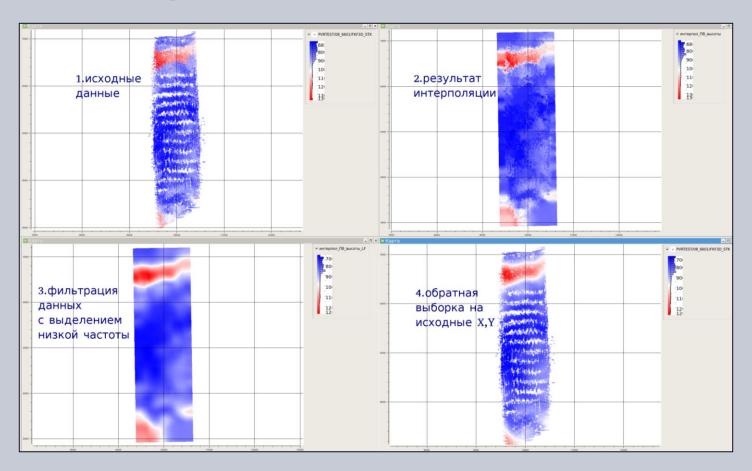


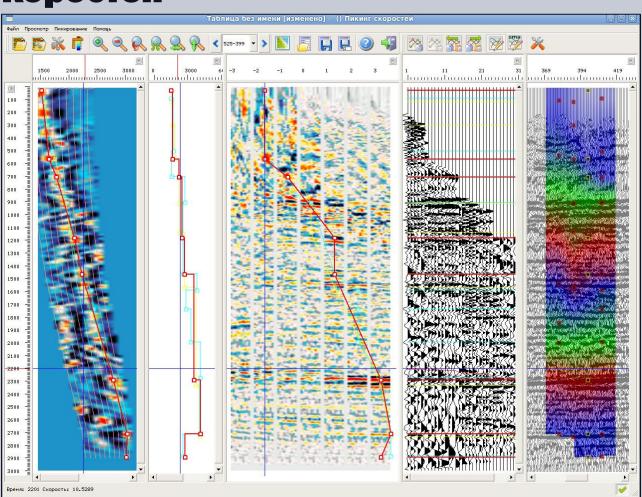
Виброисточник Волна-Спутник Временной Диапазон Вычитание Декорреляция Добавление - Шум Конволюция Корреляция Множественный Импульс Наложение Волны-Спутника Нормализация Окно Импульса Оператор Эквивалент Передискретизация Предиктивная Деконволюция Прибор Проверка - Изменение Редактирование Импульса Сдвиг по Времени Сейсмоприёмник Сопоставление Времени Сопоставление Частот Тройная Конволюция Фильтр Формирующий Оператор

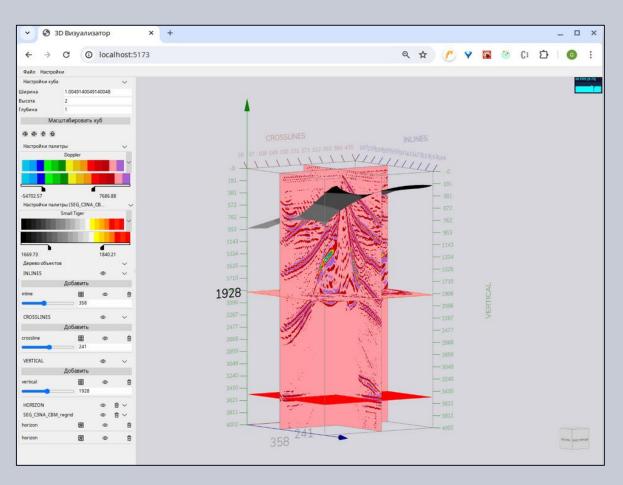

Контроль качества, анализ сейсмики


Контроль качества, анализ сейсмики


Контроль качества, анализ сейсмики


Модель ВЧР


Визуализация атрибутов


Карты и таблицы

Анализ скоростей

3D контроль качества

техническое описание

Управляющий сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 6x1Тб

Базы данных PostgreSQL

ЦПУ 2x8 ядер 03У 192Гб ПЗУ 2x480Гб + 6x2Тб

NFS сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 12x2Тб

Сервер приложений

ЦПУ 2x8 ядер ОЗУ 1024Гб ПЗУ 2x480Гб + 6x2Тб ГПУ Дискретная карта

Счетные узлы

Счётные блейды

2 Шасси по 20 блейдов

ЦПУ Intel 2x8 ядер

O3У 256Гб ПЗУ 2х2Тб

СХД

Стоечные сервера

4 сервера по 12 дисков в каждом

ЦПУ 2x8 ядер 03У 256Гб

ПЗУ 2х480Тб + 12х10Тб

Сеть 10/25 Гб/с

Рекомендованная схема оборудования по Альтаир - М

Управляющий сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 6x1Тб

Базы данных PostgreSQL

ЦПУ 2x8 ядер 03У 192Гб ПЗУ 2x480Гб + 6x2Тб

NFS сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 12x2Тб

Сервер приложений

ЦПУ 2x8 ядер ОЗУ 1024Гб ПЗУ 2x480Гб + 6x2Тб ГПУ Дискретная карта

Счетные узлы

Счётные блейды

2 Шасси по 20 блейдов

ЦПУ Intel 2x8 ядер

 03У
 256Гб

 ПЗУ
 2х2Тб

СХД

Стоечные сервера

4 сервера по 12 дисков в каждом

ЦПУ 2x8 ядер 03У 256Гб

ПЗУ 2х480Тб + 12х10Тб

Сеть 10/25 Гб/с

Управляющий сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 6x1Тб

Базы данных PostgreSQL

ЦПУ 2x8 ядер 03У 192Гб ПЗУ 2x480Гб + 6x2Тб

NFS сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 12x2Тб

Сервер приложений

ЦПУ 2x8 ядер ОЗУ 1024Гб ПЗУ 2x480Гб + 6x2Тб ГПУ Дискретная карта

Счетные узлы

Счётные блейды

2 Шасси по 20 блейдов

ЦПУ Intel 2x8 ядер

O3У 256Гб ПЗУ 2x2Тб

СХД

Стоечные сервера

4 сервера по 12 дисков в каждом

ЦПУ 2x8 ядер 03У 256Гб

ПЗУ 2х480Т6 + 12х10Т6

Сеть 10/25 Гб/с

Управляющий сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 6x1Тб

Базы данных PostgreSQL

ЦПУ 2x8 ядер 03У 192Гб ПЗУ 2x480Гб + 6x2Тб

NFS сервер

ЦПУ 2x8 ядер ОЗУ 192Гб ПЗУ 2x480Гб + 12x2Тб

Сервер приложений

ЦПУ 2x8 ядер ОЗУ 1024Гб ПЗУ 2x480Гб + 6x2Тб ГПУ Дискретная карта

Счетные узлы

Счётные блейды

2 Шасси по 20 блейдов

ЦПУ Intel 2x8 ядер

 03У
 256Гб

 ПЗУ
 2х2Тб

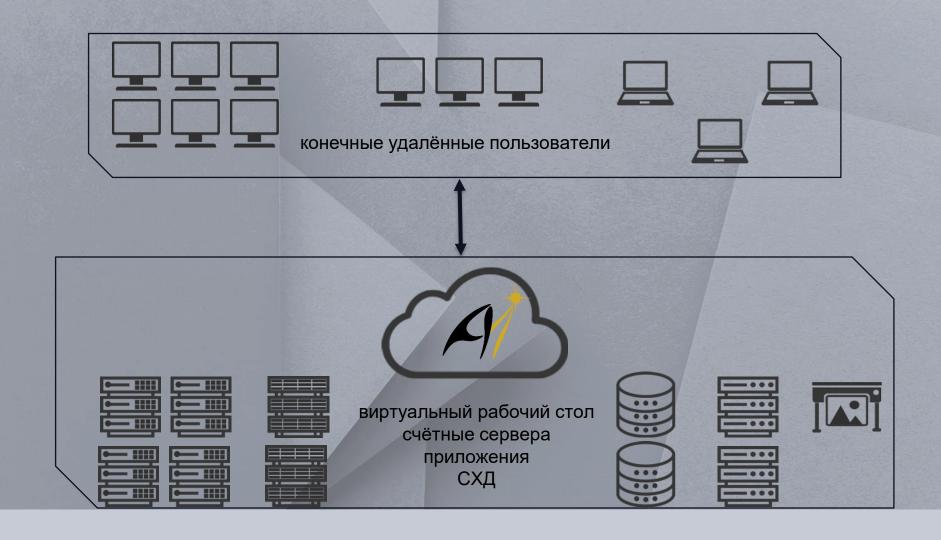
СХД

Стоечные сервера

4 сервера по 12 дисков в каждом

ЦПУ 2х8 ядер


O3У 256Гб ПЗУ 2х48ОТ6 + 12х1ОТ6

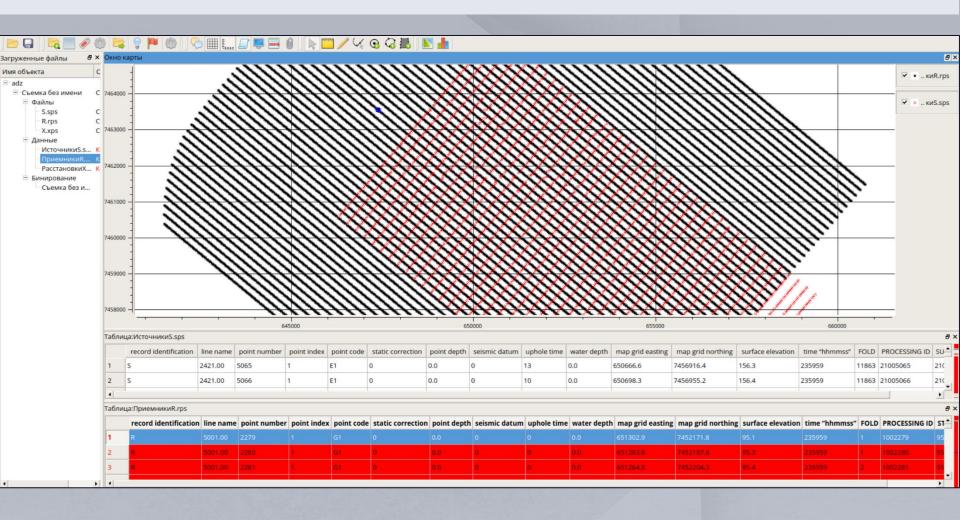


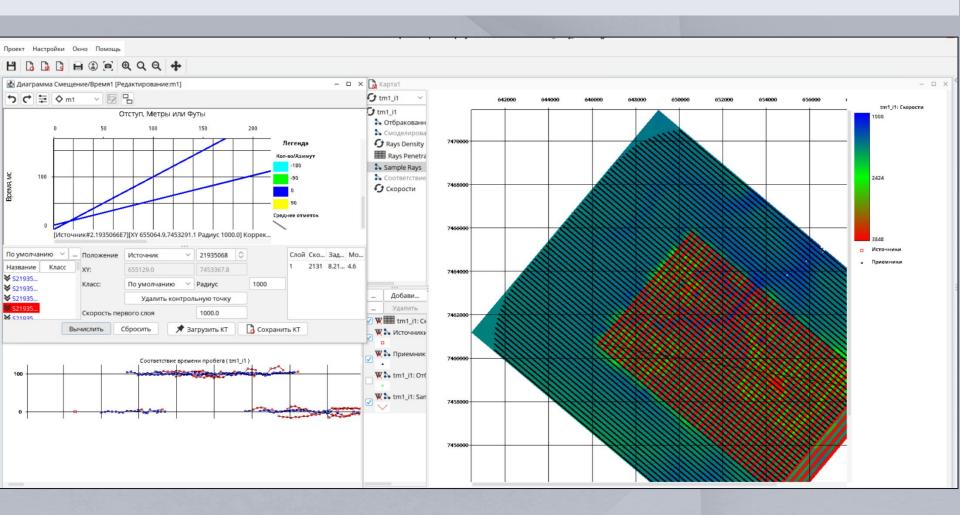
Сеть 10/25 Гб/с

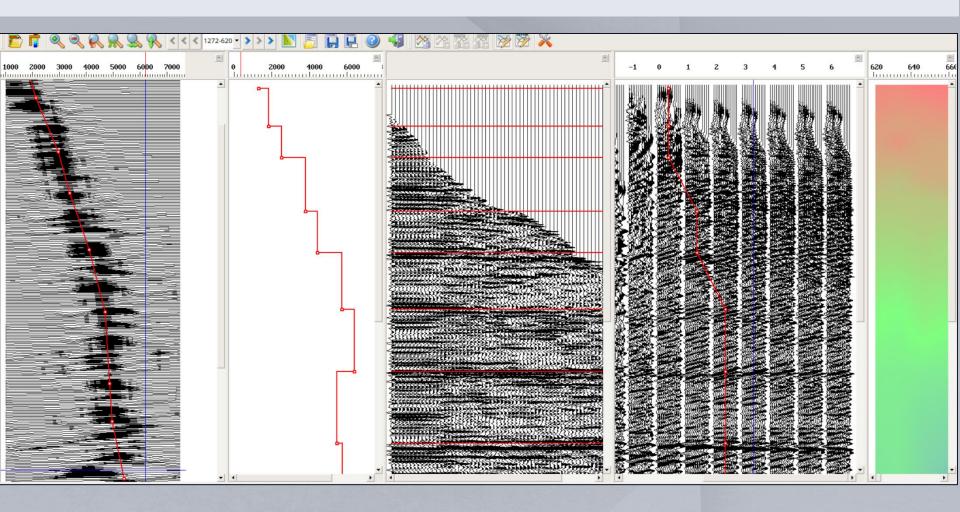
Рекомендованная схема оборудования по Альтаир - М

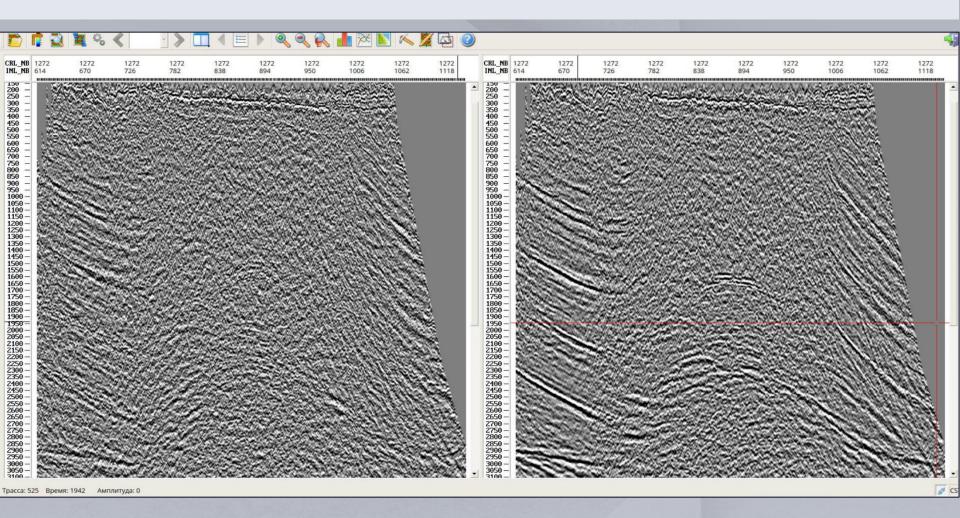
Использование облачных ресурсов

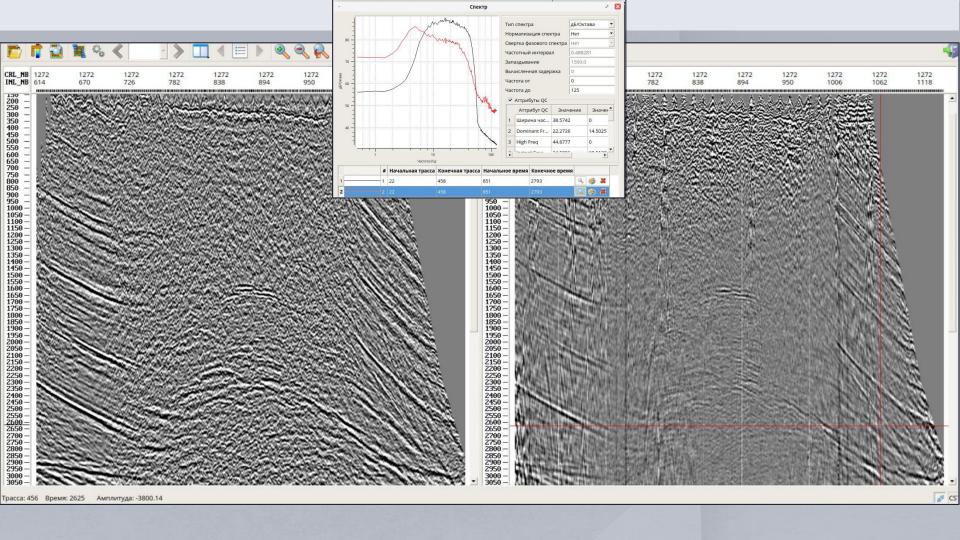
Использование облачных ресурсов

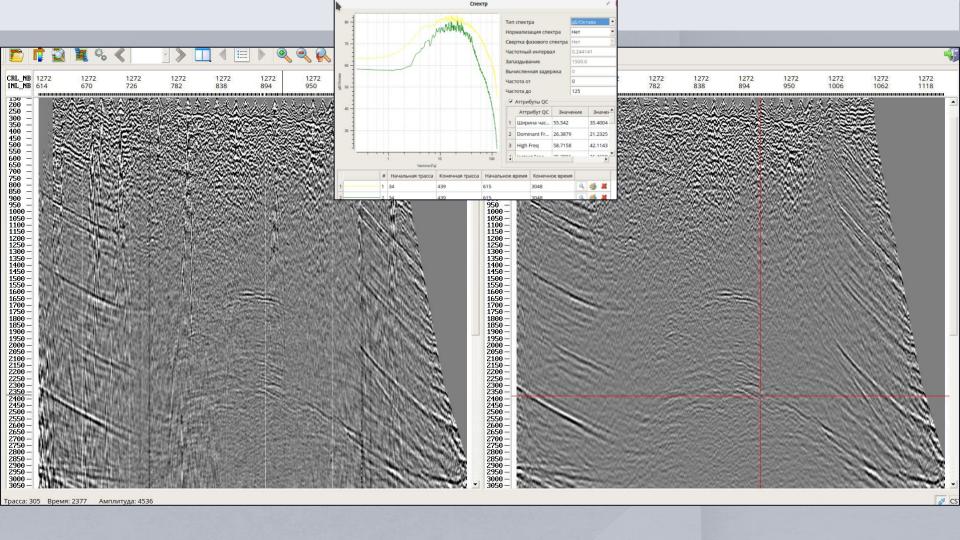


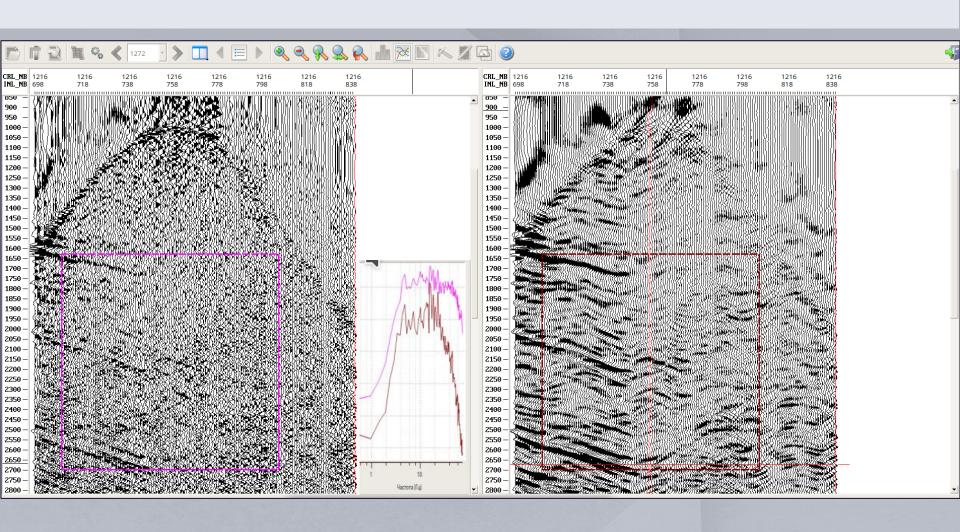

общие мощности для всех филиалов

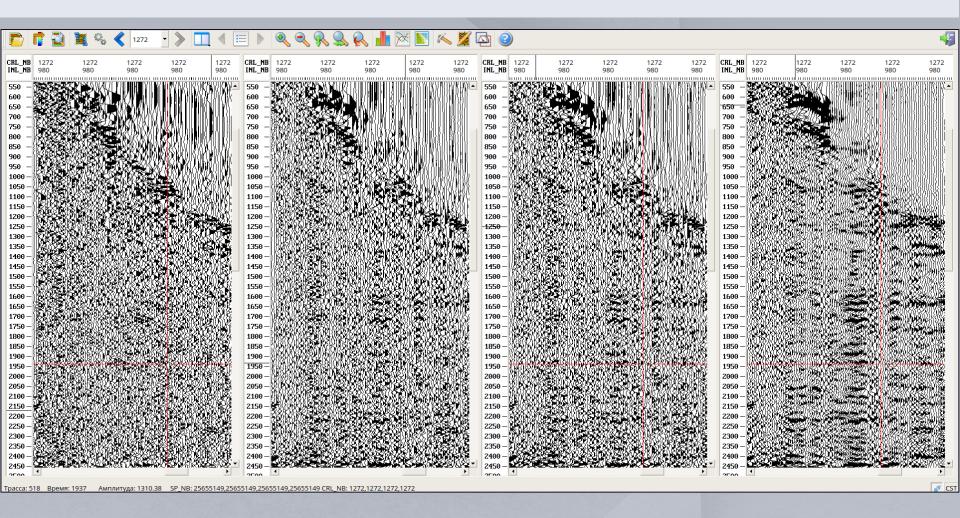

примеры обработки

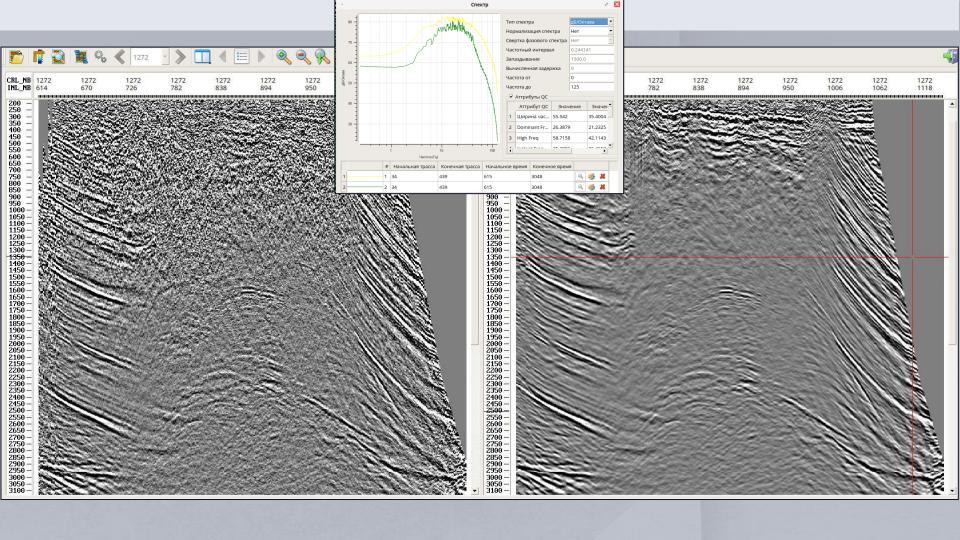


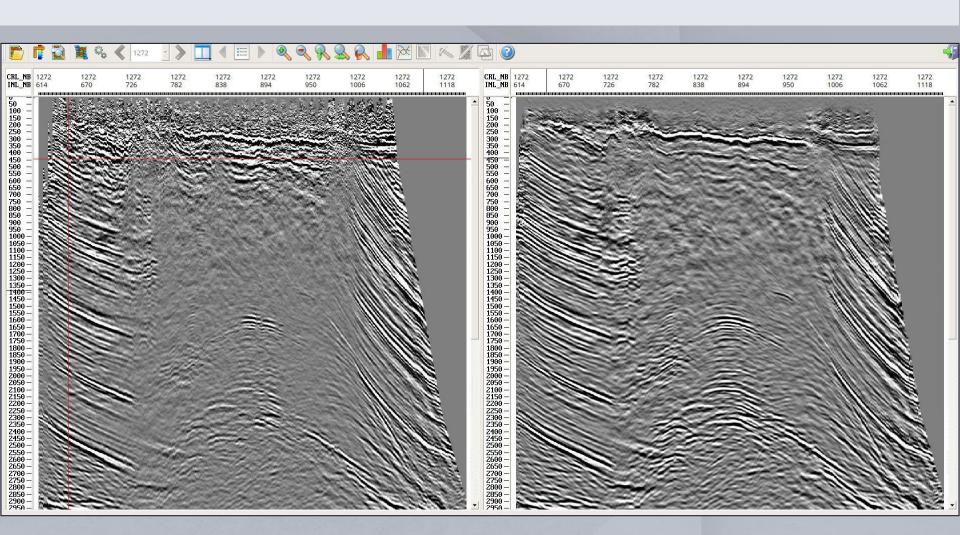

ПРИМЕРЫ ОБРАБОТКИ. ПРИМЕР 1 (3D) СОЛЯНОКУПОЛЬНАЯ ТЕКТОНИКА

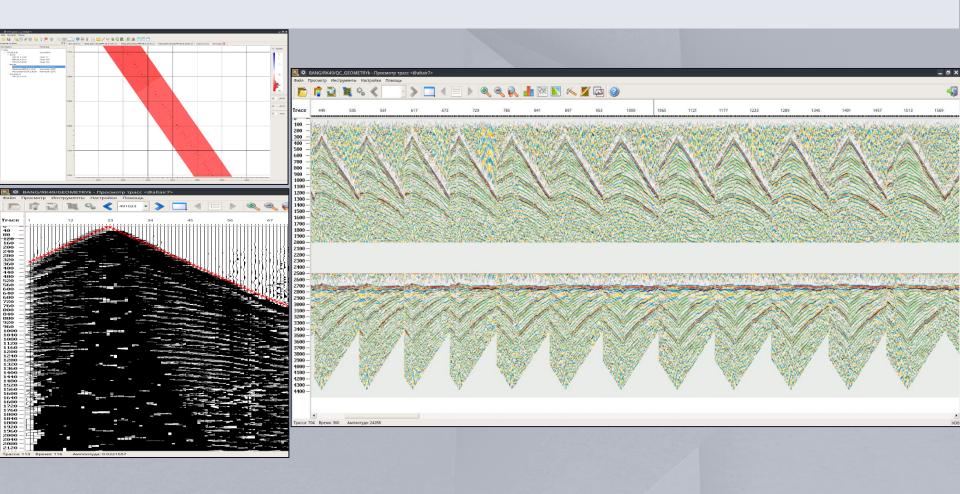


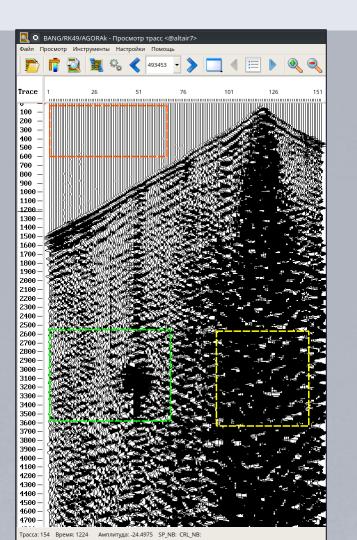


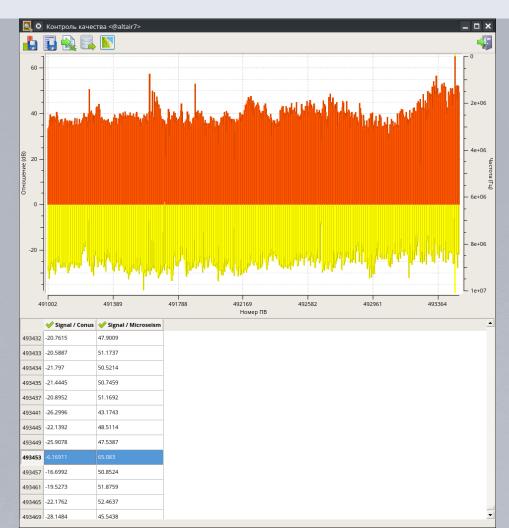


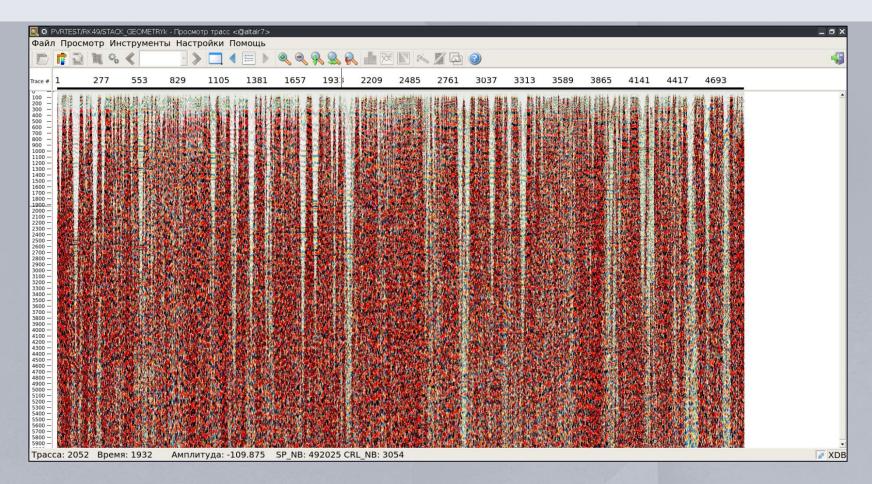


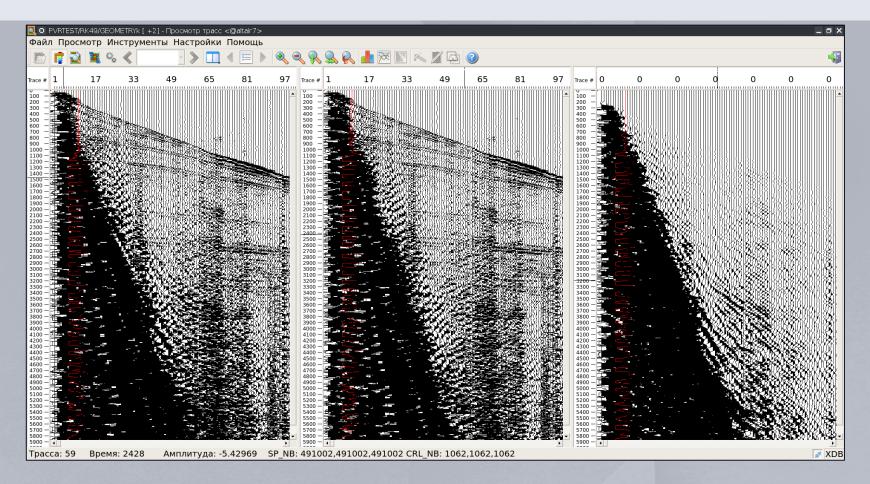


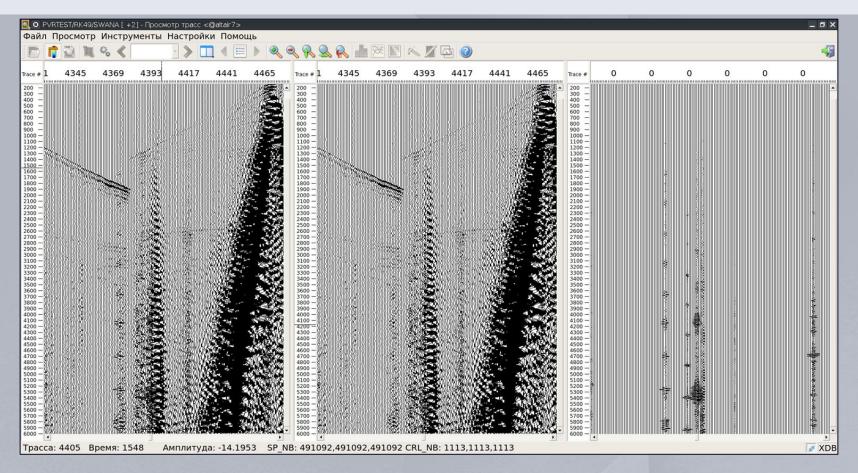


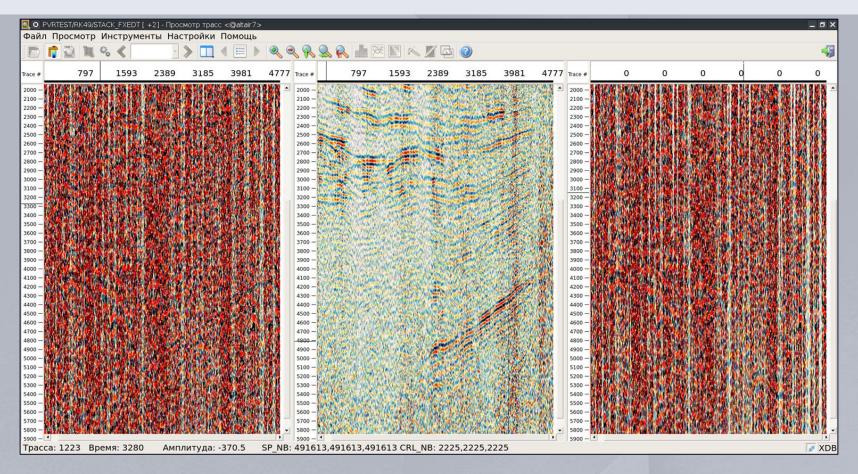


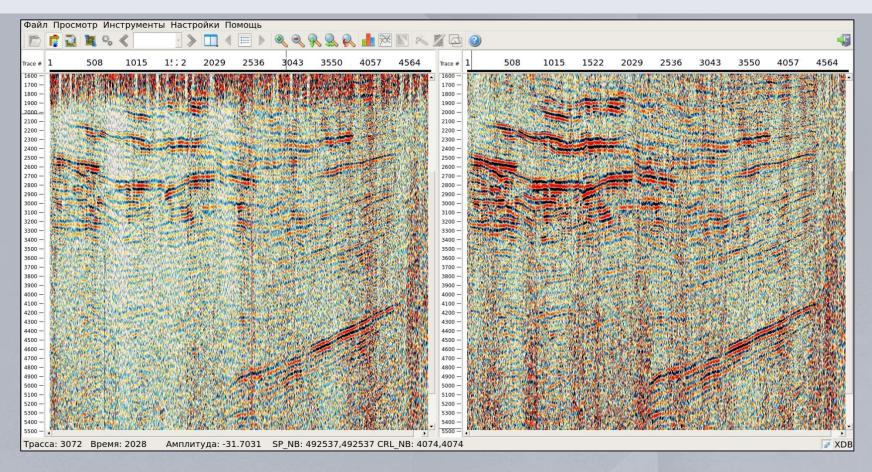


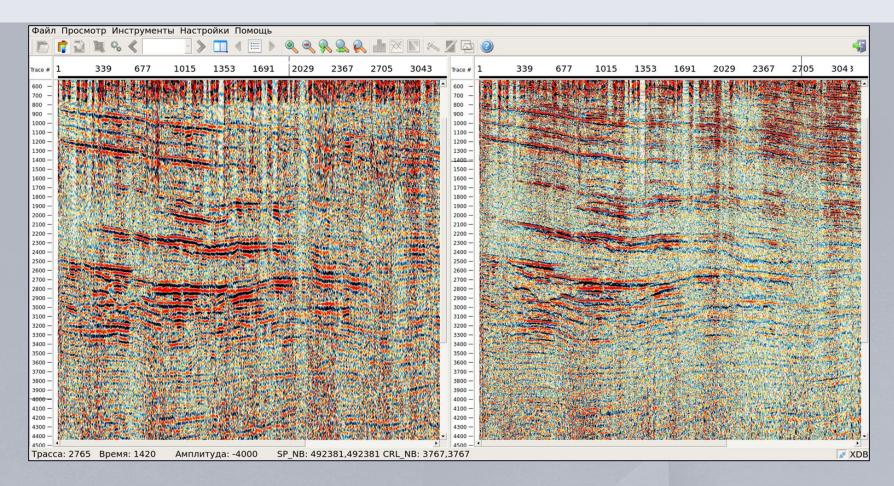


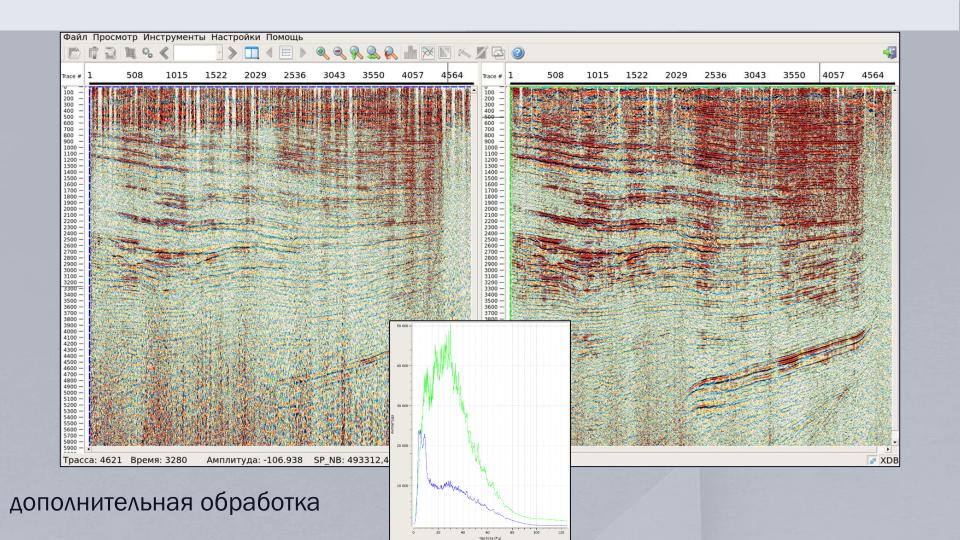

ПРИМЕРЫ ОБРАБОТКИ. ПРИМЕР 2 (2D) ДЕЛЬТОВАЯ РАВНИНА В ЮЖНОЙ АЗИИ

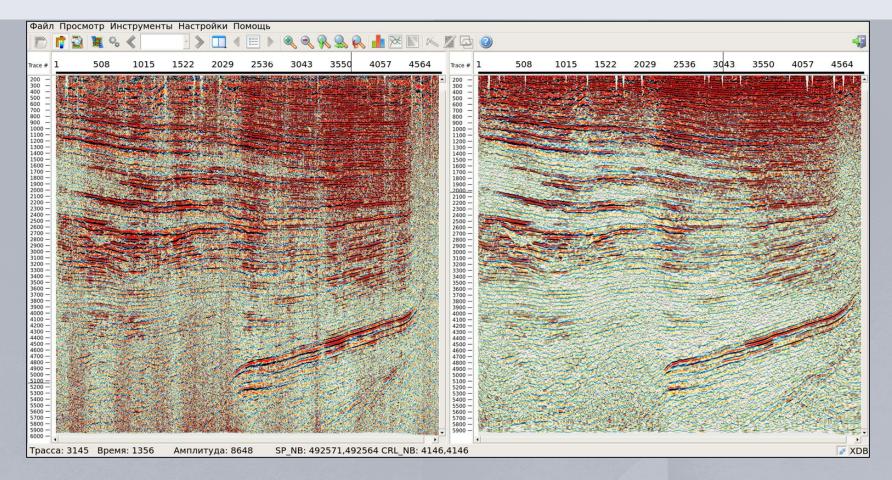




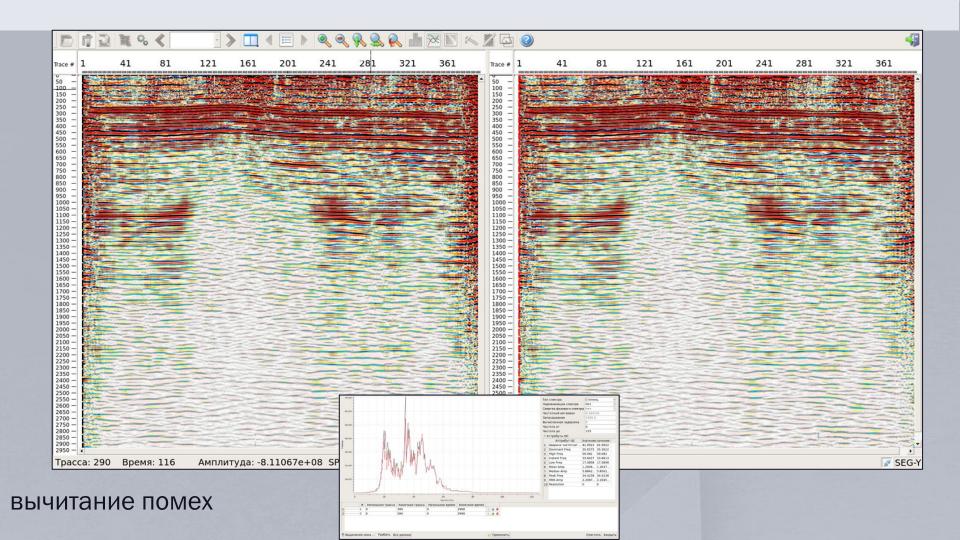

подавление поверхностных волн

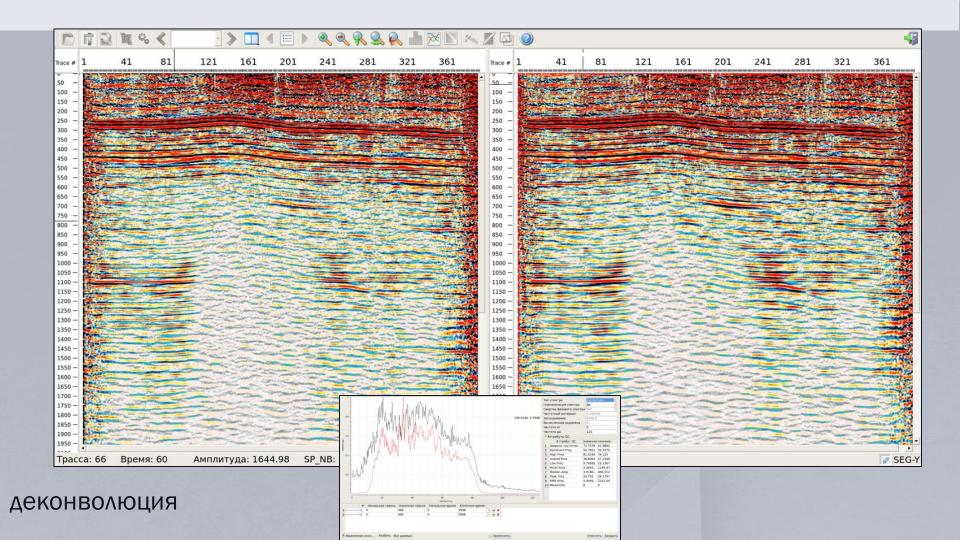

фильтрация в области F-X

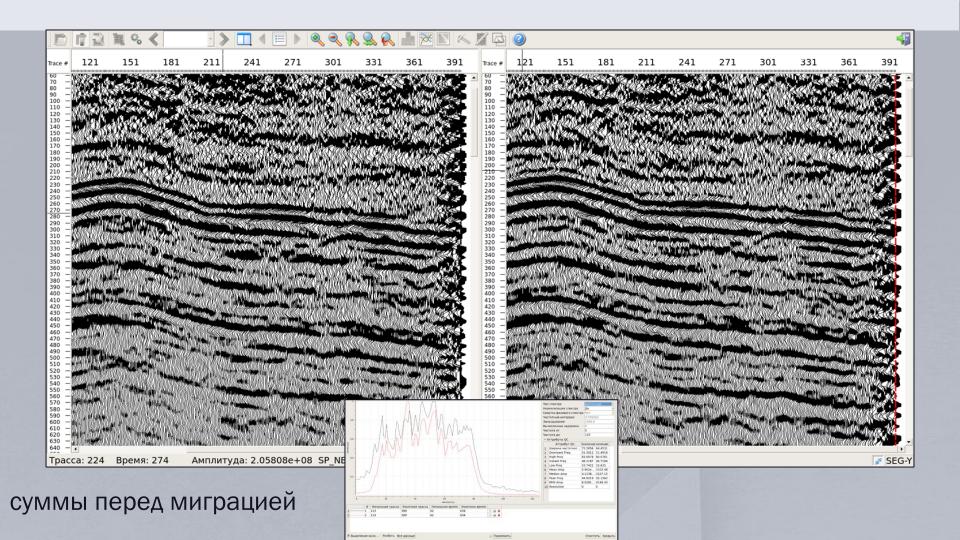


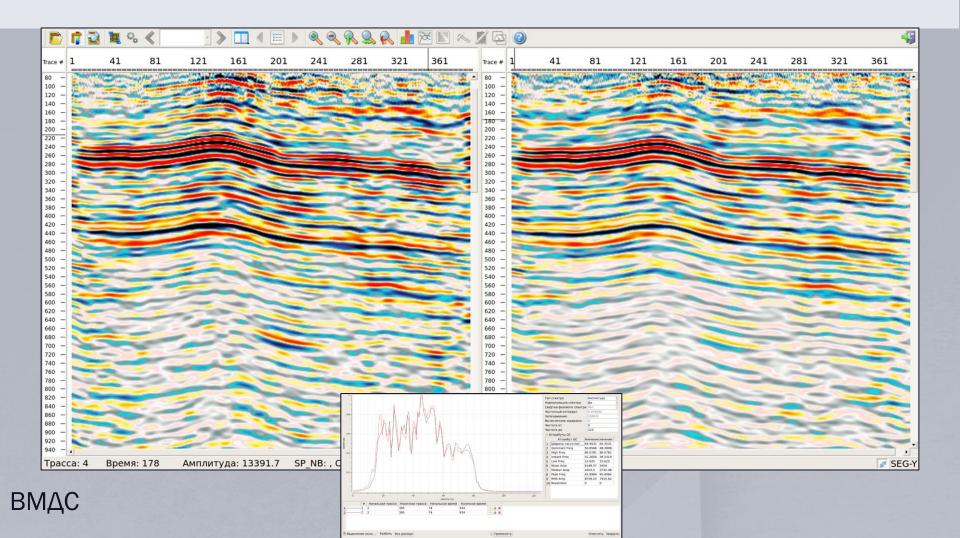

частотно-зависимое подавление (сумма)

уточнение скоростей и ввод статики









ПРИМЕРЫ ОБРАБОТКИ. ПРИМЕР 3
(СРАВНЕНИЕ ПО)
ВОЛГО-УРАЛЬСКАЯ НЕФТЕГАЗОНОСНАЯ ОБЛАСТЬ

ПРИМЕРЫ ОБРАБОТКИ. ПРИМЕР 4
В ОЖИДАНИИ ДОСТУПА К РЕЗУЛЬТАТАМ

преимущества

Преимущества Альтаир-М

Альтаир-М сейчас

стандартный поточный подход, промышленные масштабы, обкатанные технологии

Альтаир-М в будущем

SWI (2025 г.)

FWI (2026 г.)

LSM (2026 г.)

Преимущества Альтаир-М

отсутствие санкционных рисков

Альтаир-М – система класса **Omega / Geovation**, но развиваемая в **России**

технологии

Возможности Альтаир-М

Обеспечивает полный цикл обработки сейсмических данных в поточном производственном режиме в сжатые сроки, используя весь потенциал современного оборудования.

Документация

Сборка: 2024

CyrillicID 🗸

Все А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Темы

О Документация Пользователя

Пакетные Модули

Словарь Атрибутов

Интерактивные Приложения

Категории Модулей

Амплитуды

Анализ Атрибутов

Ввод / Вывод

Геометрия

Деконволюция

Инструменты Расчета и КК

Интерполяция

<u>Миграция</u>

Многокомпонентные

Поиск на странице: Введите ключевые слова

Модули > По Алфавиту > Н

Словарь: 2024

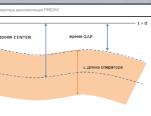
Модуль 🔺	Категория	Описание \$
<u>Навигация 2D</u>	Морская Геометрия	Обновление геометрии 2D данных морской сейсморазведки
<u>Навигация 2D/3D</u>	Морская Геометрия	Обновление и контроль качества 2D и 3D заголовков трасс по навигационным трассам или по файлу UKOOA P1/90
<u>Наземная геометрия</u> 2D/3D	<u>Геометрия</u>	Присвоение геометрии для наземных данных 2D и 3D
<u>Наклонная</u> фильтрация	<u>Шумоподавление</u>	Согласованная с наклонами фильтрация данных
<u>Нарезка</u>	<u>Интерполяция</u>	Разделение данных для параллельных модулей
<u>Нуль-фазовая</u> <u>деконволюция</u>	<u>Деконволюция</u>	Деконволюция с ограниченной полосой частот и несколькими окнами (нуль-фазовый вход/выход)

2.3. Главное окно 2.3.1. Общая информация Главное окно Альтаир-М Планировщик показано ниже. □ 0 0 0 0 0 0 0 0 □ □ □ 2) Основная панель 3) Панель выбора данных в рабочей области 4) Инструменты для работы со вкладками 5) Вкладки Панель обзора производственного процесс ры анализа Фурье вет и дополнительно выводит: ы (AMPL) либо по логарифмической шкале (DB), либо по линейной ется тип эпементов, солержащихся в текущей анные) и соответствующий рабочий проект OS1 и PHA) в радианах (RAD) или градусах проект). Для получения более подробной На примере выше показана рабочая область. панели, будет варьироваться в зависимости от фазовый спектры (AMPL, POWERn, OS1 и PHA) , специальные для расчета амплитудного спектра

е окно (в мс), используемое для расчета спектров. По умолчанию вся трасса. кодной зоны (в мс), применяемой в начале и конце временного окна. Длина

ы п ограничивается одной третью временного окна.

ды и фазы (AMPL и PHA)


пектр (AMPL и POWERn)

параметры расчета

, NRt, POWER

j = длина (в мс) обнуленных участков, добавляемых на границах временного окна. По умолчанию: 100

Если задан этот параметр, модуль рассчитывает и выводит логарифмический амплитудный спектр в 1/50 дБ, а также график с помощью моделирования векторного файла на логарифмической шкале.

Счётные модули. Геометрия

Модуль > Категор Словарь: 2024	ия > Геометрия		
Модуль ▲	Категория	Описание	\$
<u>Геодезия</u>	<u>Геометрия</u>	Геодезические преобразования	
Локальная геометрия	<u>Геометрия</u>	Преобразование геодезической привязки	
<u>Наземная геометрия</u> 2D/3D	<u>Геометрия</u>	Присвоение геометрии для наземных данных 2D и 3D	
<u>Ориентировка</u> <u>азимутов</u>	<u>Геометрия</u>	Обновление азимутальной информации заголовков	

Модуль > Категория > Морская Геометрия				
Словарь: 2024				
Модуль	▲ Категория Описание \$			
<u>Навигация 2D</u>		Морская Геометрия	Обновление геометрии 2D данных морской сейсморазведки	
<u>Навигация 2D/3D</u>		Морская Геометрия	Обновление и контроль качества 2D и 3D заголовков трасс п навигационным трассам или по файлу UKOOA P1/90	0

Счётные модули. Оценка качества, анализ атрибутов

Модуль > Категория > Инструменты Расчета и КК			
Словарь: 2024			
Модуль	▲ Категория	Описание	\$
Запись КК в БД	<u>Инструменты Расчета и КК</u>	Контроль качества сейсмотрасс (заголовки и данные)	
КК 1 массива	<u>Инструменты Расчета и КК</u>	Расчёт атрибутов контроля качества для одного массива	
КК 2 массивов	<u>Инструменты Расчета и КК</u>	Различные атрибуты контроля качества для двух массивов	
<u>КК N массивов</u>	<u>Инструменты Расчета и КК</u>	Различные атрибуты контроля качества для нескольких массивов	
<u>КК навигации 4D</u>	<u>Инструменты Расчета и КК</u>	Контроль качества 4D навигационных данных после суммирования	
<u>Фурье 1D</u>	<u>Инструменты Расчета и КК</u>	Одномерное преобразование Фурье	

модуль > категория > Анализ Атриоутов			
Словарь: 2024			
Модуль ▲	Категория	Описание	\$
AVO анализ	<u>Анализ Атрибутов</u>	Анализ зависимости амплитуд от удалений с 2/3 элементами методом повторно взвешенных наименьших квадратов	1
AVO/AVAZ анализ	<u>Анализ Атрибутов</u>	Анализ зависимости амплитуды от азимута	
Визуализация угла падения	<u>Анализ Атрибутов</u>	Визуализация атрибута угла падения	
<u>Куб Q</u>	<u>Анализ Атрибутов</u>	Куб Q	
<u>Флюид фактор</u>	<u>Анализ Атрибутов</u>	Расчёт переменного флюид-фактора	

Счётные модули. Амплитуды

<u>Адаптивная АРУ</u>	<u>Амплитуды</u>	Адаптивная автоматическая регулировка амплитуд
Амплитудные полосы (скаляры)	<u>Амплитуды</u>	дестрайпинг морских данных
Амплитудные полосы 1 (срезы)	<u>Амплитуды</u>	Удаление амплитудных полос в морских данных: временные срезы
Амплитудные полосы 2 (применение)	<u>Амплитуды</u>	Подавление амплитудных полос в морских данных
Амплитудные полосы 2 (расчёт)	<u>Амплитуды</u>	Удаление амплитудных полос в морских данных: расчёт усилений
<u>Амплитудные</u> расчёты	<u>Амплитуды</u>	Вычисление амплитудных атрибутов для коррекции на морском профиле
<u>АРУ</u>	<u>Амплитуды</u>	Динамическая балансировка амплитуд
<u>Взвешивание 3D</u>	<u>Амплитуды</u>	3D взвешивание трасс после суммирования
<u>КК амплитуд</u>	<u>Амплитуды</u>	Расчёт амплитудных характеристик трасс
<u>Кривая усилений</u>	<u>Амплитуды</u>	Переменная по времени регулировка амплитуд
<u>Мьютинг</u>	<u>Амплитуды</u>	Мьютинг трасс
<u>Пересчёт амплит</u> уд	<u>Амплитуды</u>	Переменное по времени и пространству масштабирование
<u>Пространственное</u> <u>сглаживание</u>	<u>Амплитуды</u>	Пространственное сглаживание амплитуд
Угловой мьютинг	<u>Амплитуды</u>	Мьютинг по углам падения
<u>Удаление полос</u>	<u>Амплитуды</u>	Многоцелевое удаление полос по времени и амплитуде
Усиление по времени	<u>Амплитуды</u>	Усиление в зависимости от времени
<u>Усиления по таблице</u>	<u>Амплитуды</u>	Применение поверхностно-согласованного усиления

Счётные модули. Статические поправки

REMI пикинг	Статика	Расчет статических поправок 3D с гармонизацией
REMI статика	Статика	Расчет статических поправок 3D с гармонизацией
Водный столб 1:пикинг	<u>Статика</u>	Статика с учётом водного столба: пикинг
Водный столб 2:инверсия	<u>Статика</u>	Статика с учётом водного столба: инверсия
<u>Водный столб</u> <u>3:применение</u>	Статика	Статика с учётом водного столба Статика с учётом водного столба
<u>Выравнивание</u>	Статика	Выравнивание событий на сейсмограммах
<u>Выравнивание</u> <u>статики 2D</u>	Статика	Расчёт 2D выравнивающей (trim) статики
<u>Выравнивание</u> <u>статики 3D</u>	Статика	Вычисление 3D остаточной (trim) статики
<u>Инверсия</u> преломленных волн	Статика	Томографическая инверсия преломлённых волн
<u>Монте Карло</u>	Статика	Расчёт статики по методу Монте Карло
Пикинг вступлений	Статика	Автоматический пикинг первых вступлений различными методами
Применение статики	Статика	Применение статических поправок - с опцией для плавающего поверхностно-согласованного уровня приведения
ПС статика: применение	Статика	Чтение файлов кросс-корреляции и расчёт статики по ПВ и ПП
ПС статика: расчёт	Статика	Расчёт поверхностно-согласованной статики с сохранением файлов кросс-корреляции
Статика из скоростей	Статика	Расчёт статики из модели скоростей и координат
Томография 1-х вступлений	Статика	Расчёт 3D томостатики, используя значения пикинга первых вступлений
<u>Топография</u>	Статика	Сглаживание и интерполяция топографических данных
<u>Упрощённый пикинг</u>	Статика	Автоматический пикинг первых вступлений

Счётные модули. Скорости

<u>HD азимуты</u>	Скорости	Анализ остаточной азимутальной скорости
<u>НD интерполяция</u>	Скорости	Линейная интерполяция временных срезов в направлении XY
<u>НD остаточная</u> <u>кинематика</u>	Скорости	Пикинг остаточной кинематики (RMO) высокой плотности
<u>НD пикинг</u>	Скорости	Автоматический пикинг негиперболических кинематических параметров высокой плотности
<u>HD утилиты</u>	Скорости	Операции с кинематическими параметрами высокой плотности
Азимутальная выравнивающая статика	Скорости	Выравнивающая (trim) статика для азимутального приращения
<u>Азимутальные</u> <u>утилиты</u>	Скорости	Азимутальное остаточное приращение (RMO) + фильтрация атрибутов QRS + расчёт атрибутов скоростей
<u>Азимутальный</u> <u>анализ</u>	Скорости	Анализ анизотропного приращения и азимутальный анализ скоростей
<u>Ввод/вывод</u> кинематики	Скорости	Применение высокоточных кинематических поправок, поправка с двойным квадратным корнем (предгорья) и азимутальная кинематика
Запись FDM	Скорости	Преобразование трасс TTI скоростей в FDM
Мьютинг из скорости	Скорости	Расчёт мьютинга из скоростей
Сдвиги с Фурье	Скорости	Применение переменных по времени сдвигов
Скорости RMS в Int	Скорости	Преобразование среднеквадратичной скорости в интервальную скорость
Скоростной анализ	Скорости	Подготовка данных для скоростного анализа
Трассы атрибутов	Скорости	Преобразование таблиц скоростей в трассы скоростей
<u>Уровень для</u> <u>скоростей</u>	Скорости	Приведение скоростей к заданному уровню приведения
<u>Чтение FDM</u>	Скорости	Преобразование FDM в трассы TTI скоростей
Экспорт скоростей	Скорости	Преобразование файлов скоростей во внешние форматы

Счётные модули. Деконволюция

Модуль > Категория > Деконволюция _{Словарь: 2024}		
Модуль 🔺	Категория	Описание \$
<u>Деконволюция</u>	<u>Деконволюция</u>	Деконволюция сжатия с пространственной вариацией окон
<u>Нуль-фазовая</u> <u>деконволюция</u>	<u>Деконволюция</u>	Деконволюция с ограниченной полосой частот и несколькими окнами (нуль-фазовый вход/выход)
<u>Предсказывающая</u> <u>деконволюция</u>	<u>Деконволюция</u>	Предсказывающая деконволюция
<u>ПС деконволюция</u>	<u>Деконволюция</u>	Поверхностно-согласованная деконволюция
ПС деконволюция 1 спектры	<u>Деконволюция</u>	Поверхностно-согласованная деконволюция с коррекцией фазы/амплитуды высокой плотности: построение спектров/ скаляров
ПС деконволюция 2 расчёт	<u>Деконволюция</u>	Поверхностно-согласованная деконволюция с коррекцией фазы/амплитуды высокой плотности: обсчёт спектров/ скаляров
ПС деконволюция 3 применение	<u>Деконволюция</u>	Поверхностно-согласованная деконволюция с коррекцией фазы/амплитуды высокой плотности: применение спектров/ скаляров

Счётные модули. Шумоподавление 1

BroadSeis шумодав	<u>Шумоподавление</u>	Снижение уровня помех для широкополосных данных
<u>FK фильтр 2D</u>	<u>Шумоподавление</u>	Фильтрация в области F-К
<u>FK фильтр 3D</u>	<u>Шумоподавление</u>	Устранение следа системы наблюдений или фильтрация по наклонам в области 3D FK
<u>FX редакция</u>	<u>Шумоподавление</u>	Усиление соотношения сигнал-помехи и/или редактирование аномальных значений обратной фильтрацией в области F-X
<u>НD фильтр</u>	<u>Шумоподавление</u>	Фильтрация параметров высокой плотности
Вейвлет разложение	<u>Шумоподавление</u>	3D фильтрация помех с вейвлет преобразованием
Внешние шумы	<u>Шумоподавление</u>	Подавление внешних помех
<u>Гармонизация</u> <u>амплит</u> уд	<u>Шумоподавление</u>	Коррекция амплитудных аномалий
<u>Гео статистическая</u> фильтрация	<u>Шумоподавление</u>	3D геостатистическая фильтрация
<u>Дисперсия</u>	<u>Шумоподавление</u>	Подавление дисперсионных волн
<u>Интерференция</u>	<u>Шумоподавление</u>	Подавление помех сейсмической интерференции
<u>Исправление</u> <u>дискретов</u>	<u>Шумоподавление</u>	Удаление сбойных дискретов трасс
<u>Когерентность 3D</u>	<u>Шумоподавление</u>	Улучшение когерентности за счёт наклонного суммирования
<u>Линейный шум</u>	<u>Шумоподавление</u>	Подавление линейных помех с помощью 3D фильтров
<u>Медианная</u> фильтрация	<u>Шумоподавление</u>	Зависимая от угла наклона медианная/усеченная фильтрация по среднему значению
<u>Многомерное</u> подавление линейных	<u>Шумоподавление</u>	Многомерное подавление линейных событий

Счётные модули. Шумоподавление 2

Моно частота	<u>Шумоподавление</u>	Подавление моно-частотных помех за счёт спектрального предсказания
<u>Наклонная</u> <u>фильтрация</u>	<u>Шумоподавление</u>	Согласованная с наклонами фильтрация данных
<u>Одноканальная</u> редакция дискретов	<u>Шумоподавление</u>	Автоматическое редактирование дискретов (одноканальное)
<u>Поверхностные</u> <u>волны</u>	<u>Шумоподавление</u>	Подавление поверхностных волн с зеркальными частотами
<u>Подавление конуса</u>	<u>Шумоподавление</u>	Адаптивное подавление поверхностных волн
<u>Проекционный</u> <u>фильтр 2D</u>	<u>Шумоподавление</u>	Подавление случайных помех с сохранением сигнала (проекционный фильтр)
<u>Проекционный</u> <u>фильтр 3D</u>	<u>Шумоподавление</u>	Подавление случайных помех с помощью проекционной фильтрации в 3D
<u>Проекционный</u> фильтр: каскад	<u>Шумоподавление</u>	Каскадное подавление случайных помех с сохранением сигнала
<u>Регулярные помехи</u> <u>3D</u>	<u>Шумоподавление</u>	Фильтрация регулярных помех в 3D
Структурно согласованная фильтрация	<u>Шумоподавление</u>	Структурно-согласованная фильтрация
<u>Фильтрация</u> <u>сейсмограмм</u>	<u>Шумоподавление</u>	Пространственно-временная фильтрация с учётом удалений
<u>Фильтры Eigen</u> <u>Cadzow</u>	<u>Шумоподавление</u>	Удаление помех по алгоритмам Cadzow (Hankel) и Eigen
<u>Частотное</u> подавление	<u>Шумоподавление</u>	Частотно-зависимое подавление помех - подавление высокоамплитудных помех с разложением на частотные полосы

Счётные модули. Подавление кратных волн

Модуль 🔺	Категория	Описание \$
SRME 3D	Подавление Кратных	Свёрточное моделирование методом 3D SRME
SRMM 3D	Подавление Кратных	3D SRMM
<u>Адаптивное</u> вычитание 2D	Подавление Кратных	Адаптивное вычитание модели
<u>Адаптивное</u> вычитание 3D	Подавление Кратных	Адаптивное вычитание модели в 3D
<u>Вычитание</u>	Подавление Кратных	Адаптивное вычитание
<u>Дифрагированные</u> <u>кратные</u>	Подавление Кратных	Подавление дифрагированных кратных
<u>Морские кратные</u>	Подавление Кратных	2D предсказание кратных волн от свободной поверхности и удаление кратных волн на мелководье
<u>Подавление</u> <u>первичных</u>	Подавление Кратных	Удаление кратных волн методом подавления однократных волн
<u>Подготовка к SRMM</u>	Подавление Кратных	Разделение на интервалы разрезов после миграции для моделирования кратных волн на основе модели
<u>Радон</u> <u>шумоподавление</u>	Подавление Кратных	Подавление помех или кратных волн с учётом зеркальных частот в области Радона с высоким разрешением
<u>Частично кратные 2D</u>	Подавление Кратных	2D подавление заданных частично-кратных волн
<u> Частично кратные 3D</u>	Подавление Кратных	3D подавление заданных частично-кратных волн

Счётные модули. Обработка сигнала

BroadSeis сигнатура	Обработка Сигнала	Учёт формы импульса с ограничением усиления для широкополосных данных
<u>Q компенсация</u>	Обработка Сигнала	Компенсация и моделирование затухания и дисперсии
<u>Вейвлет</u> <u>балансировка</u>	Обработка Сигнала	Оценка/компенсация с балансировкой в вейвлет области
<u>Конволюция и</u> <u>корреляция</u>	Обработка Сигнала	Корреляция и свёртка
<u>Операторы</u> <u>согласования</u>	Обработка Сигнала	Расчёт оператора согласования
<u>Отбеливание</u>	Обработка Сигнала	Спектральная балансировка или фильтрация
<u>Параболический</u> <u>Радон</u>	Обработка Сигнала	3D параболическая фильтрация в области Радона (прямая/ обратная)
<u>Пере дискретизация</u>	Обработка Сигнала	Изменение дискретизации трасс
<u>Разложение</u> <u>вейвлета</u>	Обработка Сигнала	Разложение вейвлета
<u>Спектральное</u> <u>согласование</u>	Обработка Сигнала	Спектральное согласование
<u>Тау-Пи</u>	Обработка Сигнала	Прямое/обратное преобразование в область TauP на сейсмограммах до суммирования
<u>Усреднение</u> <u>операторов</u>	Обработка Сигнала	Усреднение временных операторов в амплитудной и частотной области
<u>Фильтр</u>	Обработка Сигнала	Свёртка и частотная фильтрация

Счётные модули. Миграция

Модуль > Категория > Миграция			
Словарь: 2024			
Модуль ▲	Категория	Описание	\$
RTM	<u>Миграция</u>	Обратно-временная глубинная миграция	
<u>Артефакты RTM</u>	<u>Миграция</u>	Удаление артефактов и растяжения удалений после обратновременной миграции (RTM)	
<u>Базовая Миграция</u> <u>Гаусса</u>	<u>Миграция</u>	Миграция по гауссовым пучкам	
<u>Дискретизация</u> <u>скоростей</u>	<u>Миграция</u>	Изменение дискретизации скоростей для расчёта времён пробега с уравнением эйконала	
Кирхгоф в глубине	<u>Миграция</u>	3D глубинная миграция до суммирования по Кирхгофу	
Кирхгоф во времени	<u>Миграция</u>	Временная миграция до суммирования по Кирхгофу	
Трассирование лучей	<u>Миграция</u>	Расчёт карт времён пробега трассировкой лучей	
<u>Уровень приведения</u> <u>OBS/OBN</u>	<u>Миграция</u>	Пересчёт уровня приведения данных морской донной съёмки (OBS/OBN) методом PSPI	

Счётные модули. Томография

Модуль > Категория > Томография		
Словарь: 2024		
Модуль ▲	Категория	Описание
RCA Томография	Томография	Томография для обновления ГСМ
Запись CIG	<u>Томография</u>	Преобразование пикинга остаточной кинематики (RMO) в пикинг сейсмограмм общего изображения (CIG)
<u>Инварианты в</u> <u>глубине</u>	<u>Томография</u>	Кинематическая демиграция для выполнения томографии по глубине
<u>Инварианты во</u> <u>времени</u>	<u>Томография</u>	Кинематическая временная демиграция для томографии
Пикинг RMO	<u>Томография</u>	Широко-азимутальный пикинг остаточной кинематики (RMO)
<u>Томография в</u> <u>глубине</u>	<u>Томография</u>	Анизотропная глубинная томография
<u>Томография во</u> <u>времени</u>	<u>Томография</u>	Анизотропная временная томография
<u>Чтение CIG</u>	<u>Томография</u>	Преобразование пикинга сейсмограмм общего изображения (CIG) в пикинг остаточной кинематики (RMO)

Счётные модули. Интерполяция

Модуль > Категория > Интерполяция		
Словарь: 2024		
Модуль ▲	Категория	Описание \$
<u>5D регуляризация</u>	<u>Интерполяция</u>	Многомерная регуляризация Фурье
<u>Аппроксимация</u> <u>атрибутов</u>	<u>Интерполяция</u>	Интерполяция/экстраполяция разрежённых атрибутов
<u>Гео статистическая</u> регуляризация	<u>Интерполяция</u>	Геостатистическая регуляризация
Интерполяция 2к1	<u>Интерполяция</u>	Интерполяция данных 2D
<u>Нарезка</u>	<u>Интерполяция</u>	Разделение данных для параллельных модулей
<u>Регуляризация 2D</u>	<u>Интерполяция</u>	Регуляризация данных вдоль одного направления (2D)
<u>Регуляризация 3D</u>	<u>Интерполяция</u>	Регуляризация данных вдоль двух направлений одновременно (3D)
Скорость судна	<u>Интерполяция</u>	Расчёт скорости судна
Снос приёмника	<u>Интерполяция</u>	Поправка за движение приёмника

Счётные модули. Мониторинговая съёмка

Модуль > Категория > Мониторинговая Съёмка		
Словарь: 2024		
Модуль 🔺	Категория	Описание \$
4D бининг	Мониторинговая Съёмка	4D съёмка: гибкое 3D бинирование
4D мульти бининг	Мониторинговая Съёмка	4D бинирование нескольких съёмок и по нескольким азимутам
4D навигация	Мониторинговая Съёмка	4D бинирование по данным навигации
4D Расчёт оператора	Мониторинговая Съёмка	Расчёт оператора для 4D калибровки
Кригинг фильтрация	Мониторинговая Съёмка	Общий сейсмический анализ по кригингу
<u>Применение</u> <u>оператора 4D</u>	Мониторинговая Съёмка	Спектральная фильтрация для 4D калибровки
<u>Согласование и</u> <u>регулировка 4D</u>	Мониторинговая Съёмка	Одновременное согласование и устранение полосчатости в съёмках 4D
<u>Факториальный</u> кригинг 4D	Мониторинговая Съёмка	Факторный кригинг входных карт
Фильтрация карт	Мониторинговая Съёмка	Геостатистическая фильтрация карт

Счётные модули. Многокомпонентные данные

2С Поворот	<u>Многокомпонентные</u>	2С изменение направления многокомпонентных данных
3С Поворот	<u>Многокомпонентные</u>	Поворот многокомпонентных данных
3С Реориентация	<u>Многокомпонентные</u>	Реориентация 3С приёмников по первым вступлениям
<u>ЗС сдвиги</u>	<u>Многокомпонентные</u>	Сдвиги многокомпонентных данных в зависимости от времени (последовательное снятие влияния вышележащих слоёв до суммирования)
<u>ЗС скаляры</u>	<u>Многокомпонентные</u>	Масштабирование многокомпонентных данных
3С сумма	<u>Многокомпонентные</u>	Взвешенное суммирование многокомпонентных данных
<u>3С Угловое</u> <u>сканирование</u>	Многокомпонентные	Реориентация трёхкомпонентного датчика сканированием углов
3С Углы наклона: применение	Многокомпонентные	Применение поправок за наклон
3С Углы наклона: расчёт	<u>Многокомпонентные</u>	Вывод углов наклона по 3С
PS Статика	<u>Многокомпонентные</u>	Взвешенная статика продольных PP и обменных PS волн
РZ суммирование	<u>Многокомпонентные</u>	Суммирование гидрофона / геофона (донная сейсморазведка OBC)
<u>ТаиРХ-РҮ</u> <u>деконволюция</u>	<u>Многокомпонентные</u>	2D/3D деконволюция нисходящих и восходящих волн в области Tau-PX-PY
<u>Бининг ССР</u>	<u>Многокомпонентные</u>	Бинирование общих точек обмена (ССР)
Вычитание ЗС	<u>Многокомпонентные</u>	Адаптивное вычитание с использованием 2D оператора
Гамма инверсия	<u>Многокомпонентные</u>	Инверсия многокомпонентных сейсмических AVO/AVA данных
<u>Разделение PS</u>	Многокомпонентные	Разделение волнового поля данных донной сейсморазведки OBS на P и S волны
<u>Расчёт Гамма</u>	<u>Многокомпонентные</u>	Расчёт коэффициента Пуассона после суммирования

Счётные модули. Суммирование, ввод/вывод

<u>Радиальная сумма</u>	<u>Суммирование</u>	Радиальное смешивание трасс
Сумма	<u>Суммирование</u>	Суммирование сейсмических данных с возможностью выбора взвешивания либо без такового
Сумма со взвешиванием	<u>Суммирование</u>	Общее суммирование со взвешиванием
<u>Частичное</u> <u>суммирование</u>	<u>Суммирование</u>	Частичное суммирование, создание, экстраполяция трасс в группе после дифференциального NMO

Запись CST	Ввод / Вывод	Запись трасс в формате Geocluster для совместимости
Запись GHF	<u>Ввод / Вывод</u>	Запись трасс на диск (без БД)
Запись SEG	<u>Ввод / Вывод</u>	Запись данных в формате SEG D/Y
Запись сейсмики	<u>Ввод / Вывод</u>	Запись сейсмических данных в БД
<u>Синтетика</u>	<u>Ввод / Вывод</u>	создание синтетических трасс
<u>Создание WZ</u>	<u>Ввод / Вывод</u>	Создание кубов в формате WZ и загрузка трасс
<u>Чтение CST</u>	<u>Ввод / Вывод</u>	Чтение трасс формата Geocluster с целью совместимости
<u>Чтение GHF</u>	<u>Ввод / Вывод</u>	Чтение трасс с диска (без БД)
<u>Чтение SEG</u>	<u>Ввод / Вывод</u>	Чтение данных в формате SEG D/Y
<u>Чтение WZ</u>	<u>Ввод / Вывод</u>	Считывание сейсмики из кубов формата WZ в требуемом порядке
<u>Чтение сейсмики</u>	Ввод / Вывод	Считывание сейсмических данных из БД

Счётные модули. Вспомогательные модули

COV бининг	<u>Управление Данными</u>	Бинирование по векторам удалений
<u>БД Индекс</u>	<u>Управление Данными</u>	Определение индекса данных для таблиц БД
Восстановление заголовков	<u>Управление Данными</u>	Восстановление ключевых заголовков и установка флагов
Вставка трасс	<u>Управление Данными</u>	Заполнение пропущенных трасс
Заголовки из БД	<u>Управление Данными</u>	Обновление заголовка трассы по атрибутам из БД
Загрузка таблиц	<u>Управление Данными</u>	Считывание и анализ больших таблиц
Замена RL и SI	<u>Управление Данными</u>	Модификация заголовков
<u>Ключи WZ</u>	<u>Управление Данными</u>	Создание атрибута формата WZ для сортировки в порядке удаление-инлайн-кросслайн
<u>Маркировка</u> <u>заголовков</u>	<u>Управление Данными</u>	Обновление заголовков трасс из таблиц
<u>Математика</u> <u>заголовков</u>	<u>Управление Данными</u>	Математические операции с заголовками трасс
<u>Математика трасс</u>	<u>Управление Данными</u>	Математические расчёты и анализ для трасс
<u>Перебинирование</u>	<u>Управление Данными</u>	Интеллектуальное бинирование
<u>Передача трасс</u>	<u>Управление Данными</u>	Передача трасс внутри модуля и операции с трассами
Печать заголовков	<u>Управление Данными</u>	Вывод заголовков трасс в журнал
<u>Разворот</u> <u>сейсмограмм</u>	<u>Управление Данными</u>	Создание сейсмограмм с развёрнутым порядком трасс
Слияние трасс	<u>Управление Данными</u>	Слияние трасс из различных потоков
Сохранение таблиц	<u>Управление Данными</u>	Сохранение больших таблиц после анализа
<u>Транспонирование</u>	<u>Управление Данными</u>	Создание временных срезов по 3D блоку
Фильтр заголовков	<u>Управление Данными</u>	Согласование и фильтрация значений в заголовках трасс

Счётные модули. Таблицы

<u>3D грид</u>	<u>Таблицы</u>	Определение сетки съёмки
<u>геометрия глубинной</u> <u>миграции</u>	<u>Таблицы</u>	Данные геометрии съёмки для глубинной миграции до суммирования
определение окон	<u>Таблицы</u>	Определение окон
параметры глубинной миграции	<u>Таблицы</u>	Параметры глубинной миграции до суммирования по Кирхгофу
список записи SEG	<u>Таблицы</u>	Определение ленты, картриджа или диска для выходных данных
список чтения SEG	<u>Таблицы</u>	Определение последовательности чтения входных данных
<u>таблица FK</u>	<u>Таблицы</u>	Определение F-K фильтра
таблица вариативного мьютинга	<u>Таблицы</u>	Определение мьютинга трасс (увеличение или уменьшение удалений)
таблица морского дна	<u>Таблицы</u>	Определение значений пикинга морского дна
таблица мьютинга	<u>Таблицы</u>	Определение мьютинга трасс
таблица не эллиптичности	<u>Таблицы</u>	Определение неэллиптичности
таблица региональной статики	<u>Таблицы</u>	Определение плавающего уровня приведения
таблица сдвигов	<u>Таблицы</u>	Определение сдвигов
таблица скоростей	<u>Таблицы</u>	Определение поля скоростей
таблица усилений	<u>Таблицы</u>	Определение усилений
таблица фильтров	<u>Таблицы</u>	Определение фильтров
талица границ сетки	<u>Таблицы</u>	Определение границ 3D сетки
формат записи SEG	<u>Таблицы</u>	Определение последовательности записи выходных данных
формат чтения SEG	<u>Таблицы</u>	Определение формата входных данных

Счётные модули. Модули '25 +

BroadSeis дегостинг

Вычитание в Курвлет области

Контролируемая миграция по пучкам Гаусса

Q томография и миграция

SWI

FWI

ИТОГИ

Итоги

Альтаир-М – активно развиваемый комплекс для обработки сейсмических данных, внесённый в реестр отечественного ПО

Альтаир-М должен рассматриваться как вариант импортозамещения комплексов обработки сейсмических данных РФ

Опробование Альтаир-М

ООО «Совфрансгео» предоставляет Альтаир-М на опробование.

Уже взяли на внутреннее тестирование:

- АО «МАГЭ»
- Мурманский арктический университет
- АО «ДМНГ»
- 000 «Газпромнефть НТЦ»
- 000 «Газпром ВНИИГАЗ»
- ООО «ТННЦ»
- ПАО «Пермнефтегеофизика»
- ПАО «Самаранефтегеофизика»
- ЗАО «МиМГО»
- ОП «Иркутское геофизическое подразделение» АО «Росгео»

Заинтересованы взять на тестирование:

- ООО «НОВАТЭК НТЦ»
- 000 «СамараНИПИнефть»
- НИПИ «СургутНИПИнефть»
- ООО «ЛУКОЙЛ-Западная Сибирь»

и другие компании

СПАСИБО ЗА ВНИМАНИЕ

info@sovfransgeo.ru info@mage.ru info@antares-kod.ru

